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Preface

The two most important advantages of this book are (1) the fact that it has
been written by an epidemiologist, and (2) the word ‘applied’, which implies
that the emphasis of this book lies more on the application of statistical tech-
niques for longitudinal data analysis and not so much on the mathematical
background. In most other books on the topic of longitudinal data analysis,
themathematical background is themajor issue,whichmaynotbe surprising
since (nearly) all the books on this topic have been written by statisticians.
Although statisticians fully understand the difficult mathematical material
underlying longitudinal data analysis, they often have difficulty in explaining
this complexmaterial in a way that is understandable for the researchers who
have to use the technique or interpret the results. In fact, an epidemiologist is
not primarily interested in the basic (difficult) mathematical background of
the statistical methods, but in finding the answer to a specific research ques-
tion; the epidemiologist wants to know how to apply a statistical technique
and how to interpret the results. Owing to their different basic interests and
different level of thinking, communication problems between statisticians
and epidemiologists are quite common. This, in addition to the growing
interest in longitudinal studies, initiated the writing of this book: a book on
longitudinal data analysis, which is especially suitable for the ‘non-statistical’
researcher (e.g. epidemiologist). The aim of this book is to provide a practi-
cal guide on how to handle epidemiological data from longitudinal studies.
The purpose of this book is to build a bridge over the communication gap
that exists between statisticians and epidemiologists when addressing the
complicated topic of longitudinal data analysis.

Jos Twisk
Amsterdam, January 2002
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1

Introduction

1.1 Introduction

Longitudinal studies are defined as studies in which the outcome variable
is repeatedly measured; i.e. the outcome variable is measured in the same
individual on several different occasions. In longitudinal studies the obser-
vations of one individual over time are not independent of each other, and
therefore it is necessary to apply special statistical techniques, which take into
account the fact that the repeated observations of each individual are correl-
ated. The definition of longitudinal studies (used in this book) implicates
that statistical techniques like survival analyses are beyond the scope of this
book. Those techniques basically are not longitudinal data analysing tech-
niques because (in general) the outcome variable is an irreversible endpoint
and therefore strictly speaking is onlymeasured at one occasion. After the oc-
currence of an event nomore observations are carried out on that particular
subject.
Why are longitudinal studies so popular these days? One of the reasons

for this popularity is that there is a general belief that with longitudinal
studies the problem of causality can be solved. This is, however, a typical
misunderstanding and is only partly true. Table 1.1 shows the most im-
portant criteria for causality, which can be found in every epidemiological
textbook (e.g. Rothman and Greenland, 1998). Only one of them is specific
for a longitudinal study: the rule of temporality. There has to be a time-
lag between outcome variable Y (effect) and predictor variable X (cause);
in time the cause has to precede the effect. The question of whether or not
causality exists can only be (partly) answered in specific longitudinal stud-
ies (i.e. experimental studies) and certainly not in all longitudinal studies
(see Chapter 2). What then is the advantage of performing a longitudinal
study? A longitudinal study is expensive, time consuming, and difficult to

1



2 Introduction

Table 1.1. Criteria for causality

Strength of the relationship

Consistency in different populations and under different circumstances

Specificity (cause leads to a single effect)

Temporality (cause precedes effect in time)

Biological gradient (dose–response relationship)

Biological plausibility

Experimental evidence

analyse. If there are no advantages over cross-sectional studies why bother?
The main advantage of a longitudinal study compared to a cross-sectional
study is that the individual development of a certain outcome variable over
time can be studied. In addition to this, the individualdevelopment of a cer-
tain outcome variable can be related to the individual development of other
variables.

1.2 General approach

The general approach to explain the statistical techniques covered in this
book will be ‘the research question as basis for analysis’. Although it may
seem quite obvious, it is important to realize that a statistical analysis has to
be carried out in order to obtain an answer to a particular research question.
The starting point of each chapter in this book will be a research question,
and throughout the book many research questions will be addressed. The
book is further divided into chapters regarding the characteristics of the
outcome variable. Each chapter contains extensive examples, accompanied
by computer output, in which special attention will be paid to interpretation
of the results of the statistical analyses.

1.3 Prior knowledge

Although an attempt has been made to keep the complicated statistical
techniques as understandable as possible, and although the basis of the
explanations will be the underlying epidemiological research question, it
will be assumed that the reader has some prior knowledge about (simple)



3 Example

cross-sectional statistical techniques suchas linear regressionanalysis, logistic
regression analysis, and analysis of variance.

1.4 Example

In general, the examples used throughout this book will use the same lon-
gitudinal dataset. This dataset consists of an outcome variable (Y) that is
continuous and is measured six times. Furthermore there are four predictor
variables, which differ in distribution (continuous or dichotomous) and in
whether they are time dependent or time independent. X1 is a continuous
time-independent predictor variable, X2 is a continuous time-dependent
predictor variable. X3 is a dichotomous time-dependent predictor variable
and X4 is a dichotomous time-independent predictor variable. All time-
dependent predictor variables are measured at the same six occasions as the
outcome variable Y.
In some examples a distinction will be made between the example dataset

with equally spaced time intervals and a dataset with unequally spaced time
intervals. In the latter, the first four measurements were performed with
yearly intervals, while the fifth and sixth measurements were performed
with 5-year intervals (Figure 1.1).

1 2 43

1 2 3

5 6

5 6

4 5 6

1 2 3

1 2 3

4

4 9 14

time (years)

time (years)

equally spaced time intervals 

unequally spaced time intervals 

Figure 1.1. In the example dataset equally spaced time intervals and unequally spaced time
intervals are used.
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Table 1.2. Descriptive informationa for an outcome variable Y and predictor
variables X 1 to X b

4
measured at six occasions

Time-point Y X1 X2 X3 X4

1 4.43 (0.67) 1.98 (0.22) 3.26 (1.24) 143/4 69/78

2 4.32 (0.67) 1.98 (0.22) 3.36 (1.34) 136/11 69/78

3 4.27 (0.71) 1.98 (0.22) 3.57 (1.46) 124/23 69/78

4 4.17 (0.70) 1.98 (0.22) 3.76 (1.50) 119/28 69/78

5 4.67 (0.78) 1.98 (0.22) 4.35 (1.68) 99/48 69/78

6 5.12 (0.92) 1.98 (0.22) 4.16 (1.61) 107/40 69/78

a For outcome variable Y and the continuous predictor variables (X1 and X2) mean and

standard deviation are given, for the dichotomous predictor variables (X3 and X4) the

numbers of subjects in the different categories are given.
b Y is serum cholesterol in mmol/l; X1 is maximal oxygen uptake (in (dl/min)/kg2/3);

X2 is the sum of four skinfolds (in cm); X3 is smoking (non-smokers versus smokers);

X4 is gender (males versus females).

In the chapters dealingwith dichotomous outcome variables, the continu-
ous outcome variable Y is dichotomized (i.e. the highest tertile versus the
other two tertiles) and in the chapter dealing with categorical outcome vari-
ables, the continuous outcome variable Y is divided into three equal groups
(i.e. tertiles).
The dataset used in the examples is taken from the Amsterdam Growth

and Health Study, an observational longitudinal study investigating the lon-
gitudinal relation between lifestyle and health in adolescence and young
adulthood (Kemper, 1995). The abstract notation of the different variables
(Y , X1 to X4) is used since it is basically unimportant what these variables
actually are. The continuous outcome variable Y could be anything, a certain
psychosocial variable (e.g. a score on a depression questionnaire, an indi-
cator of quality of life, etc.) or a biological parameter (e.g. blood pressure,
albumin concentration in blood, etc.). In this particular dataset the outcome
variable Y was total serum cholesterol expressed in mmol/l. X1 was fitness
level at baseline (measured as maximal oxygen uptake on a treadmill), X2

was body fatness (estimated by the sum of the thickness of four skinfolds),
X3 was smoking behaviour (dichotomized as smoking versus non-smoking)
and X4 was gender. Table 1.2 shows descriptive information for the variables
used in the example.
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1.5 Software

The relatively simple analyses of the example dataset were performed with
SPSS (version 9; SPSS, 1997, 1998). For sophisticated longitudinal data
analysis, other software packages were used. Generalized estimating equa-
tions (GEE) were performed with the Statistical Package for Interactive Data
Analysis (SPIDA, version 6.05; Gebski et al., 1992). This statistical package
is not often used, but the output is simple, and therefore very suitable for
educational purposes. For random coefficient analysis STATA (version 7;
STATA, 2001) was used. In Chapter 12, an overview (and comparison) will
be given of other software packages such as SAS (version 8; Littel et al., 1991,
1996), S-PLUS (version 2000; Venables and Ripley, 1997; MathSoft, 2000),
and MLwiN (version 1.02.0002; Goldstein et al., 1998; Rasbash et al., 1999).
In all these packages algorithms to perform sophisticated longitudinal data
analysis are implemented in the main software. Both syntax and output will
accompany the overview of the different packages. For detailed informa-
tion about the different software packages, reference is made to the software
manuals.

1.6 Data structure

It is important to realize that different statistical software packages need
different data structures in order to perform longitudinal analyses. In this
respect a distinction must be made between a ‘long’ data structure and a
‘broad’ data structure. In the ‘long’ data structure each subject has as many
data records as there are measurements over time, while in a ‘broad’ data
structure each subject has one data record, irrespective of the number of
measurements over time. SPSS for instance, uses a broad data structure,
while SAS, MLwiN, S-PLUS, STATA and SPIDA use a ‘long’ data structure
(Figure 1.2).

1.7 Statistical notation

The statistical notation will be very simple and straightforward. Difficult
matrix notation will be avoided as much as possible. Throughout the book
the number of subjects will be denoted as i = 1 toN, the number of times a
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ID

1
1
1
1
1
1
2
2
.
.
N
N

Y

3.5
3.7
3.9
3.0
3.2
3.2
4.1
4.1

5.0
4.7

time

1
2
3
4
5
6
1
2

5
6

X4

1
1
1
1
1
1
1
1

2
2

'long' data structure

ID

1
2
3
4
.
.
N

Yt 1

3.5
4.1
3.8
3.8

4.0

3.7
4.1
3.5
3.9

4.6

3.9
4.2
3.5
3.8

4.7

3.0
4.6
3.4
3.8

4.3

3.2
3.9
2.9
3.7

4.7

3.2
3.9
2.9
3.7

5.0

X4

1
1
2
1

2

'broad' data structure

Yt 2 Yt 3 Yt 4 Yt 5 Yt 6

Figure 1.2. Illustration of two different data structures.

certain individual is measured will be denoted as t = 1 to T, and the number
of predictor variables will be noted as j = 1 to J. Furthermore, the outcome
variable will be calledY, and the predictor variables will be calledX. All other
notations will be explained below the equations where they are used.



2

Study design

2.1 Introduction

Epidemiological studies canberoughlydivided intoobservational andexperi-
mental studies (see Figure 2.1). Observational studies can be further divided
into case–control studies and cohort studies. Case–control studies are never
longitudinal, in the way that longitudinal studies were defined in Chapter 1.
The outcome variable Y (a dichotomous outcome variable distinguishing
‘case’ from ‘control’) ismeasuredonly once. Furthermore, case–control stud-
ies are always retrospective in design. The outcome variableY is observed at a
certain time-point, and the possible predictors are measured retrospectively.
In general, cohort studies can be divided into prospective, retrospective

and cross-sectional cohort studies. A prospective cohort study is the only
cohort study that can be characterized as a longitudinal study. Cohort stud-
ies are usually designed to analyse the longitudinal development of a certain
characteristic over time. It is argued that this longitudinal development con-
cerns growth processes. However, in studies investigating the elderly, the
process of deterioration is the focus of the study, whereas in other develop-
mental processes growth and deterioration can alternately follow each other.
Moreover, in many epidemiological studies one is interested not only in the
actual growth or deterioration over time, but also in the relationship be-
tween the developments of several characteristics over time. In these studies,
the research question to be addressed is whether an increase (or decrease)
in a certain outcome variable Y is associated with an increase (or decrease)
in one or more predictor variables (X). Another important aspect of epi-
demiological observational prospective studies is that sometimes one is not
really interested in growth or deterioration, but rather in the ‘stability’ of a
certain characteristic over time. In epidemiology this phenomenon is known
as tracking (see Chapter 11).

7



8 Study design

epidemiological
studies

observational experimental

cohort study case–control study

retrospective

cross-sectional

prospective

retrospective

cohort study

prospective

Figure 2.1. Schematic illustration of different epidemiological study designs.

Experimental studies, which in epidemiology are often referred to as clin-
ical trials, arebydefinitionprospective, i.e. longitudinal.Theoutcomevariable
Y is measured at least twice (the classical ‘pre-test’, ‘post-test’ design), and
other intermediate measures are usually also added to the research design
(e.g. to evaluate short-termand long-termeffects). The aimof an experimen-
tal (longitudinal) study is to analyse the effect of one or more interventions
on a certain outcome variable Y.
In Chapter 1, it was mentioned that some misunderstanding exists with

regard to causality in longitudinal studies. However, an experimental study
or clinical trial is basically the only epidemiological study design inwhich the
issue of causality can be covered. With observational longitudinal studies,
on the other hand, the question of probable causality remains unanswered.
Most of the statistical techniques in the examples covered in this book will

be illustrated with data from an observational longitudinal study. In a sep-
arate chapter (Chapter 9), examples from experimental longitudinal studies
will be discussed extensively. Although the distinction between experimental
and observational longitudinal studies is obvious, inmost situations the stat-
istical techniques discussed for observational longitudinal studies are also
suitable for experimental longitudinal studies.
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2.2 Observational longitudinal studies

In observational longitudinal studies investigating individual development,
eachmeasurement taken on a subject at a particular time-point is influenced
by three factors: (1) age (time from date of birth to date of measurement),
(2)period(timeormomentatwhich themeasurement is taken), and(3)birth
cohort (group of subjects born in the same year). When studying individual
development, one is mainly interested in the age effect. One of the prob-
lems of most of the designs used in studies of development is that the main
age effect cannot be distinguished from the two other ‘confounding’ effects
(i.e. period and cohort effects).

2.2.1 Period and cohort effects
There is an extensive amount of literature describing age, period and co-
hort effects (e.g. Lebowitz, 1996; Robertson et al., 1999). However, most
of the literature deals with classical age–period–cohort models, which are
used to describe and analyse trends in (disease-specific) morbidity andmor-
tality (e.g. Kupper et al., 1985; Mayer and Huinink, 1990; Holford, 1992;
McNally et al., 1997; Robertson and Boyle, 1998). In this book, the main
interests are the individual development over time, and the ‘longitudinal’
relationship between different variables. In this respect, period effects or
time of measurement effects are often related to a change in measurement
method over time, or to specific environmental conditions at a particular
time of measurement. An example is given in Figure 2.2. This figure shows
the longitudinal development of physical activity with age. Physical activity
patterns were measured with a five-year interval, and were measured during
the summer in order to minimize seasonal influences. The first measure-
ment was taken during a summer with normal weather conditions. During
the summer when the second measurement was taken, the weather condi-
tions were extremely good, resulting in activity levels that were very high.
At the time of the third measurement the weather conditions were compar-
able to the weather conditions at the first measurement, and therefore the
physical activity levels were much lower than those recorded at the second
measurement.When all the results are presented in a graph, it is obvious that
the observed age trend is highly biased by the ‘period’ effect at the second
measurement.
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age (years)

physical activity (arbitrary units)

10 15 20

Figure 2.2. Illustration of a possible time of measurement effect (– – – ‘real’ age trend, --------
observed age trend).

age (years)

body height (arbitrary units)

cohort 2

cohort 1

5 10 15

Figure 2.3. Illustration of a possible cohort effect (– – – cohort specific, -------- observed).

One of the most striking examples of a cohort effect is the development of
body height with age. There is an increase in body height with age, but this
increase is highly influenced by the increase in height of the birth cohort.
This phenomenon is illustrated in Figure 2.3. In this hypothetical study,
two repeated measurements were carried out in two different cohorts. The
purpose of the study was to detect the age trend in body height. The first
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time of measurement

age

Figure 2.4. Principle of a multiple longitudinal design; repeated measurements of different
cohorts with overlapping ages (� cohort 1, * cohort 2, • cohort 3).

cohort had an initial age of 5 years; the second cohort had an initial age of
10 years. At the age of 5, only the first cohort was measured, at the age of 10,
both cohorts were measured, and at the age of 15 only the second cohort
was measured. The body height obtained at the age of 10 is the average value
of the two cohorts. Combining all measurements in order to detect an age
trend will lead to a much flatter age trend than the age trends observed in
both cohorts separately.
Both cohort and period effects can have a dramatic influence on interpre-

tation of the results of longitudinal studies. An additional problem is that it
is very difficult to disentangle the two types of effects. They can easily occur
together. Logical considerations regarding the type of variable of interest can
give some insight into the plausibility of either a cohort or a period effect.
When there are (confounding) cohort or period effects in a longitudinal
study,one shouldbevery carefulwith the interpretationof age-related results.
It is sometimes argued that the design that is most suitable for study-

ing individual growth/deterioration processes is a so-called ‘multiple lon-
gitudinal design’. In such a design the repeated measurements are taken in
more than one cohort with overlapping ages (Figure 2.4). With a ‘multiple
longitudinal design’ themain age effect canbe distinguished fromcohort and
period effects. Because subjects of the same age are measured at different
time-points, the difference in outcome variable Y between subjects of the
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age

arbitrary value

Figure 2.5. Possibility of detecting cohort effects in a ‘multiple longitudinal design’ (* cohort 1,
� cohort 2, • cohort 3).

age

arbitrary value

Figure 2.6. Possibility of detecting time of measurement effects in a ‘multiple longitudinal
design’ (* cohort 1, � cohort 2, • cohort 3).

same age, butmeasured at different time-points, can be investigated in order
to detect cohort effects. Figure 2.5 illustrates this possibility: different cohorts
have different values at the same age.
Because the different cohorts are measured at the same time-points, it is

also possible to detect possible time of measurement effects in a ‘multiple
longitudinal design’. Figure 2.6 illustrates this phenomenon.All three cohorts
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age

performance (arbitrary units)

negative
test
effect

positive
test
effect

Figure 2.7. Test or learning effects; comparison of repeated measurements of the same
subjects with non-repeated measurements in comparable subjects (different
symbols indicate different subjects, ........ cross-sectional, -------- longitudinal).

show an increase in the outcome variable at the secondmeasurement, which
indicates a possible time of measurement effect.

2.2.2 Other confounding effects
In studies investigating development, in which repeated measurements of
the same subjects are performed, cohort and period effects are not the only
possible confounding effects. The individual measurements can also be in-
fluenced by a changing attitude towards the measurement itself, a so-called
test or learning effect. This test or learning effect, which is illustrated in
Figure 2.7, can be either positive or negative.
One of the most striking examples of a positive test effect is the mea-

surement of memory in older subjects. It is assumed that with increas-
ing age, memory decreases. However, even when the time interval between
subsequent measurements is as long as three years, an increase in memory
performancewith increasing age can be observed: an increasewhich is totally
due to a learning effect (Dik et al., 2001).
Furthermore, missing data or drop-outs during follow-up can have im-

portant implications for the interpretation of the results of longitudinal data
analysis. This important issue will be discussed in detail in Chapter 10.
Analysis based on repeated measurements of the same subject can also

be biased by a low degree of reproducibility of the measurement itself. This



14 Study design

is quite important because the changes over time within one subject can
be ‘overruled’ by a low reproducibility of the measurements. An indication
of reproducibility can be provided by analysing the inter-period correla-
tion coefficients (IPC) (van ‘t Hof and Kowalski, 1979). It is assumed that
the IPCs can be approximated by a linear function of the time interval.
The IPC will decrease as the time interval between the two measurements
under consideration increases. The intercept of the linear regression line
between the IPC and the time interval can be interpreted as the instan-
taneous measurement–remeasurement reproducibility (i.e. the correlation
coefficient with a time interval of zero). Unfortunately, there are a few short-
comings in this approach. For instance, a linear relationship between the
IPC and the time interval is assumed, and it is questionable whether that
is the case in every situation. When the number of repeated measurements
is low, the regression line between the IPC and the time interval is based
on only a few data points, which makes the estimation of this line rather
unreliable. Furthermore, there are no objective rules for the interpretation
of this reproducibility coefficient. However, it must be taken into account
that low reproducibility of measurements can seriously influence the results
of longitudinal analysis.

2.2.3 Example
Table 2.1 shows the inter-period correlation coefficients (IPC) for outcome
variable Y in the example dataset. To obtain a value for the measurement–
remeasurement reproducibility, a linear regression analysis between the
length of the time interval and the IPCs was carried out. The value of the
intercept of that particular regression line can be seen as the IPC for a time
interval with a length of zero, and can therefore be interpreted as a repro-
ducibility coefficient (Figure 2.8).
The result of the regression analysis shows an intercept of 0.81, i.e. the

reproducibility coefficient of outcome variable Y is 0.81. It has already been
mentioned that it is difficult to provide an objective interpretation of this co-
efficient. Another important issue is that the interpretation of the coefficient
highly depends on the explained variance (R2) of the regression line (which
is 0.67 in this example). In general, the lower the explained variance of the
regression line, the more variation in IPCs with the same time interval, and
the less reliable the estimation of the reproducibility coefficient.
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Table 2.1. Inter-period correlation coefficients (IPC) for outcome variable Y

Yt1 Yt2 Yt3 Yt4 Yt5 Yt6

Yt1 — 0.76 0.70 0.67 0.64 0.59

Yt2 — 0.77 0.78 0.67 0.59

Yt3 — 0.85 0.71 0.63

Yt4 — 0.74 0.65

Yt5 — 0.69

Yt6 —

time interval (years)

correlation coefficient

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ß = 0.810

Figure 2.8. Linear regression line between the inter-period correlation coefficients and the
length of the time interval.

2.3 Experimental (longitudinal) studies

Experimental (longitudinal) studies are by definition prospective cohort
studies.Adistinctioncanbemadebetweenrandomizedandnon-randomized
experimental studies. In epidemiology, randomized experimental studies are
often referred to as randomized clinical trials (RCTs). In randomized ex-
perimental studies the subjects are randomly assigned to the experiment,
i.e. intervention (or interventions) under study. The main reason for this
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Figure 2.9. An illustration of a few experimental longitudinal designs: (1) ‘classic’ experimental
design, (2) ‘classic’ experimental design with baseline measurement, (3)
‘Solomon four group’ design, (4) factorial design and (5) ‘cross-over’ design.

randomization is to make the groups to be compared as equal as possible at
the start of the intervention.
It is not the purpose of this book to give a detailed description of all

possible experimental designs. Figure 2.9 summarizes a few commonly used
experimental designs. For an extensive overview of this topic, reference is
made to other books (e.g. Pockok, 1983; Judd et al., 1991; Rothman and
Greenland, 1998).
In the classical randomized experimental design, the population under

study is randomlydivided into an intervention group and anon-intervention
group (e.g. a placebo group or a group with ‘usual’ care, etc.). The groups
are thenmeasured after a certain period of time to investigate the differences
between the groups in the outcome variable. Usually, however, a baseline
measurement is performed before the start of the intervention. The so-called
‘Solomon four group’ design is a combination of the designwith andwithout
a baseline measurement. The idea behind this design is that when a baseline
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measurement is performed there is a possibility of test or learning effects,
and with a ‘Solomon four group’ design these test or learning effects can be
detected. In a factorial design, two or more interventions are combined into
one experimental study.
In the experimental designs discussed before, the subjects are randomly

assigned to two or more groups. In studies of this type, basically all subjects
have missing data for all other conditions, except the intervention to which
they have been assigned. In contrast, it is also possible that all of the sub-
jects are assigned to all possible interventions, but that the sequence of the
different interventions is randomly assigned to the subjects. Experimental
studies of this type are known as ‘cross-over trials’. They are very efficient
and very powerful, but they can only be performed for short-lasting outcome
measures.
Basically, all the ‘confounding’ effects described for observational lon-

gitudinal studies (Section 2.2) can also occur in experimental studies. In
particular, missing data or drop-outs are a major problem in experimental
studies (see Chapter 10). Test or learning effects can be present, but cohort
and time of measurement effects are less likely to occur.
It has already been mentioned that for the analysis of data from experi-

mental studies all techniques that will be discussed in the following chapters,
with examples from an observational longitudinal study, can also be used.
However, Chapters 8 and 9 especially will provide useful information regard-
ing the data analysis of experimental studies.
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Continuous outcome variables

3.1 Two measurements

The simplest form of longitudinal study is that in which a continuous out-
come variable Y is measured twice in time (Figure 3.1). With this simple
longitudinal design the following question can be answered: ‘Does the out-
come variable Y change over time?’ Or, in other words: ‘Is there a difference
in the outcome variable Y between t1 and t2?’
To obtain an answer to this question, a paired t-test can be used. Consider

the hypothetical dataset presented in Table 3.1. The paired t-test is used to
test the hypothesis that the mean difference between Yt1 and Yt2 equals zero.
Because the individual differences are used in this statistical test, it takes into
account the fact that the observations within one individual are dependent
on each other. The test statistic of the paired t-test is the average of the
differences divided by the standard deviation of the differences divided by
the square root of the number of subjects (Equation (3.1)).

t = d̄
(

sd√
N

) (3.1)

where t is the test statistic, d̄ is the average of the differences, sd is the standard
deviation of the differences, and N is the number of subjects.
This test statistic follows a t-distributionwith (N − 1) degrees of freedom.

The assumptions for using the paired t-test are twofold, namely (1) that
the observations of different subjects are independent and (2) that the dif-
ferences between the two measurements are approximately normally dis-
tributed. In research situations in which the number of subjects is quite large
(say above 25), the paired t-test can be used without any problems. With
smaller datasets, however, the assumption of normality becomes important.
When the assumption is violated, the non-parametric equivalent of the

18
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Table 3.1. Hypothetical dataset for a longitudinal
study with two measurements

i Yt1 Yt2 Difference (d)

1 3.5 3.7 −0.2

2 4.1 4.1 0.0

3 3.8 3.5 0.3

4 3.8 3.9 −0.1
...

N 4.0 4.6 −0.6

time

arbitrary value

1 2 3 4 5 6

Figure 3.1. Longitudinal study with two measurements.

paired t-test can be used (see Section 3.2). In contrast to its non-parametric
equivalent, the paired t-test is not only a testing procedure. With this statist-
ical technique the average of the paired differences with the corresponding
95% confidence interval can also be estimated.
It should be noted that when the differences are not normally distributed

and the sample size is rather large, the paired t-test provides valid results,
but interpretation of the average differences can be complicated, because the
average is not a good indicator of the mid-point of the distribution.
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3.1.1 Example
One of the limitations of the paired t-test is that the technique is only suit-
able for twomeasurements over time. It has already beenmentioned that the
example dataset used throughout this book consists of six measurements. To
illustrate the paired t-test in the example dataset, only the first and lastmeas-
urements of this dataset are used. The question to be answered is: ‘Is there
a difference in outcome variable Y between t = 1 and t = 6?’ Output 3.1
shows the results of the paired t-test.

Output 3.1. Results of a paired t-test performed on the example dataset

t-Tests for Paired Samples

Number of 2-tail

Variable pairs Corr Sig Mean SD SE of Mean

YT1 OUTCOME VARIABLE Y AT T1 4.4347 0.674 0.056

147 0.586 0.000

YT6 OUTCOME VARIABLE Y AT T6 5.1216 0.924 0.076

Paired Differences

Mean SD SE of Mean t-value df 2-tail Sig

-0.6869 0.760 0.063 -10.96 146 0.000

95% CI (-0.811, -0.563)

The first lines of the output give descriptive information (i.e. mean val-
ues, standard deviation (SD), number of pairs, etc.), which is not really
important in the light of the postulated question. The second part of the
output provides the more important information. First of all, the mean
of the paired differences is given (i.e. −0.6869), and also the 95% confid-
ence interval (CI) around this mean (−0.811 to −0.563). A negative value
indicates that there is an increase in outcome variable Y between t = 1
and t = 6. Furthermore, the results of the actual paired t-test are given:
the value of the test statistic (t = −10.96), with (N − 1) degrees of free-
dom (146), and the corresponding p-value (0.000). The results indicate that
the increase in outcome variable Y is statistically significant (p < 0.001).
The fact that there is a significant increase over time was already clear in
the 95% confidence interval of the mean difference, which did not include
zero.
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Table 3.2. Hypothetical dataset for a longitudinal study with
two measurements

i Yt1 Yt2 Difference (d) Rank number

1 3.5 3.7 −0.2 3

2 4.1 4.0 0.1 1.5a

3 3.8 3.5 0.3 4

4 3.8 3.9 −0.1 1.5a

5 4.0 4.4 −0.4 5

6 4.1 4.9 −0.8 7

7 4.0 3.4 0.6 6

8 5.1 6.8 −1.7 9

9 3.7 6.3 −2.6 10

10 4.1 5.2 −1.1 8

a The average rank is used for tied values.

3.2 Non-parametric equivalent of the paired t-test

When the assumptions of the paired t-test are violated, it is possible to
perform the non-parametric equivalent of the paired t-test, the (Wilcoxon)
signed rank sum test. This signed rank sum test is based on the ranking of
the individual difference scores, and does not make any assumptions about
the distribution of the outcome variable. Consider the hypothetical dataset
presented inTable 3.2.Thedataset consists of 10 subjects,whoweremeasured
on two occasions.
The signed rank sum test evaluates whether the sum of the rank numbers

with a positive difference is equal to the sum of the rank numbers with a neg-
ative difference.When those two are equal, it suggests that there is no change
over time. In the hypothetical dataset the sum of the rank numbers with a
positive difference is 11.5 (i.e. 1.5 + 4 + 6), while the sum of the rank num-
bers with a negative difference is 43.5. The exact calculation of the level of
significance is very complicated, and goes beyond the scope of this book. All
statistical handbooks contain tables in which the level of significance can be
found (see for instance Altman, 1991), and with all statistical software pack-
ages the levels of significance can be calculated. For the hypothetical example,
the p-value is between0.2 and0.1, indicatingno significant changeover time.
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The (Wilcoxon) signed rank sum test can be used in all longitudinal stud-
ies with two measurements. It is a testing technique which only provides
p-values, without effect estimation. In ‘real life’ situations, it will only be
used when the sample size is very small (i.e. less than 25).

3.2.1 Example
Although the sample size in the example dataset is large enough to perform a
paired t-test, in order to illustrate the technique the (Wilcoxon) signed rank
sum test will be used to test whether or not the difference between Y at t = 1
and Y at t = 6 is significant. Output 3.2 shows the results of this analysis.

Output 3.2. Output of the (Wilcoxon) matched pairs signed
rank sum test

Wilcoxon Matched-pairs Signed-ranks Test

YT1 OUTCOME VARIABLE Y AT T1

with YT6 OUTCOME VARIABLE Y AT T6

Mean Rank Cases

34.84 29 - Ranks (YT6 Lt YT1)

83.62 118 + Ranks (YT6 Gt YT1)

0 Ties (YT6 Eq YT1)

147 Total

Z = -8.5637 2-tailed P = 0.0000

The first part of the output provides the mean rank of the rank numbers
with a negative difference and the mean rank of the rank numbers with a
positive difference. It also gives the number of cases with a negative and a
positive difference. A negative difference corresponds with the situation that
Y at t = 6 is less thanY at t = 1.This correspondswith adecrease inoutcome
variable Y over time. A positive difference corresponds with the situation
that Y at t = 6 is greater than Y at t = 1, i.e. corresponds with an increase
in Y over time. The last line of the output shows the Z-value. Although
the (Wilcoxon) signed rank sum test is a non-parametric equivalent of the
paired t-test, in many software packages a normal approximation is used
to calculate the p-value. This Z-value corresponds with a highly significant
p-value (0.0000), which indicates that there is a significant change (increase)
over time in outcome variableY . Because there is ahighly significant change
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over time, the p-value obtained from the paired t-test is the same as the
p-value obtained from the signed rank sum test. In general, however, the
non-parametric tests are less powerful than the parametric equivalents.

3.3 More than two measurements

In a longitudinal study withmore than twomeasurements performed on the
same subjects (Figure 3.2), the situation becomes somewhat more complex.
A design with only one outcome variable, which is measured several times
on the same subjects, is known as a ‘one-within’ design. This refers to the fact
that there is only one factor of interest (i.e. time) and that this factor varies
only within individuals. In a situation with more than two repeated meas-
urements, a paired t-test cannot be carried out. Consider the hypothetical
dataset, which is presented in Table 3.3.
The question: ‘Does the outcome variable Y change over time?’ can be

answered with multivariate analysis of variance (MANOVA) for repeated
measurements. The basic idea behind this statistical technique is the same as
for the paired t-test. The statistical test is carried out for the T − 1 absolute

time

arbitrary value

1 2 3 4 5 6

Figure 3.2. Longitudinal study with six measurements.
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Table 3.3. Hypothetical dataset for a longitudinal study with more than
two measurements

i Yt1 Yt2 d1 Yt3 d2 · · · · Yt6 d5

1 3.5 3.7 −0.2 3.9 −0.2 3.0 0.2

2 4.1 4.1 0.0 4.2 −0.1 4.6 0.0

3 3.8 3.5 0.3 3.5 0.0 3.4 −0.4

4 3.8 3.9 −0.1 3.8 0.1 3.8 0.3
...

N 4.0 4.6 −0.6 4.7 −0.1 4.3 0.1

differences between subsequent measurements. In fact, MANOVA for re-
peated measurements is a multivariate analysis of these T − 1 absolute dif-
ferences between subsequent time-points. Multivariate refers to the fact that
T − 1 differences are used simultaneously as outcome variable. The T − 1
differences and corresponding variances and covariances form the test statis-
tic for the MANOVA for repeated measurements (Equation (3.2)).

F =
(

N − T + 1

(N − 1)(T − 1)

)
H2 (3.2a)

H2 = Ny ′
d yd
S2d

(3.2b)

where F is the test statistic, N is the number of subjects, T is the num-
ber of repeated measurements, y ′

d is the row vector of differences between
subsequent measurements, yd is the column vector of differences between
subsequent measurements, and S2d is the variance/covariance matrix of the
differences between subsequent measurements.
The F-statistic follows an F-distribution with (T − 1), (N − T + 1) de-

grees of freedom. For a detailed description of how to calculate H2 using
Equation (3.2b), reference should bemade to other textbooks (Crowder and
Hand, 1990; Hand and Crowder, 1996; Stevens, 1996)1. As with all statist-
ical techniques, MANOVA for repeated measurements is based on several
1 H2 is also known as Hotelling’s T2, and is often referred to as T2. Because throughout this book T is
used to denote the number of repeated measurements, H2 is the preferred notation for this statistic.
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assumptions. These assumptions are more or less comparable with the
assumptions of a paired t-test: (1) observations of different subjects at each
of the repeated measurements need to be independent, and (2) the obser-
vations need to be multivariate normally distributed, which is comparable
but slightly more restrictive than the requirement that the differences be-
tween subsequent measurements be normally distributed. The calculation
procedure described above is called the ‘multivariate’ approach because sev-
eral differences are analysed together. However, to answer the same research
question, a ‘univariate’ approach can also be followed. This ‘univariate’ pro-
cedure is comparable to the procedures carried out in simple analysis of
variance (ANOVA) and is based on the ‘sum of squares’, i.e. squared differ-
ences between observed values and average values. The ‘univariate’ approach
is only validwhen, in addition to the earliermentioned assumptions, an extra
assumption is met: the assumption of ‘sphericity’. This assumption is also
known as the ‘compound symmetry’ assumption. It applies, firstly, when
all correlations in outcome variable Y between repeated measurements are
equal, irrespective of the time interval between themeasurements. Secondly,
the variances of outcome variable Y must be the same at each of the repeated
measurements.
Whether or not the assumption of sphericity is met can be expressed by

the sphericity coefficient (noted as ε). In an ideal situation the sphericity
coefficient will equal one, and when the assumption is not entirely met, the
coefficient will be less than one. In this case the degrees of freedom of the
F-test used in the ‘univariate’ approach can be changed: instead of (T − 1),
(N − 1)(T − 1) the degrees of freedomwill be ε(T − 1), ε(N − 1)(T − 1).
It should be noted that the degrees of freedom for the ‘univariate’ approach
are different from the degrees of freedom for the ‘multivariate’ approach.
In many software packages, when MANOVA for repeated measurements
is carried out, the sphericity coefficient is automatically estimated and the
degrees of freedom are automatically adapted. The sphericity coefficient can
also be tested for significance (with the null hypotheses tested: sphericity
coefficient ε = 1). However, one must be very careful with the use of this
test. If the sample size is large, the test for sphericity will (almost) always give
a significant result, whereas in a study with a small sample size the test for
sphericity will (almost) never give a significant result. In the first situation,
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Table 3.4. Hypothetical longitudinal dataset with four
measurements in six subjects

i Yt1 Yt2 Yt3 Yt4 Mean

1 31 29 15 26 25.25

2 24 28 20 32 26.00

3 14 20 28 30 23.00

4 38 34 30 34 34.00

5 25 29 25 29 27.00

6 30 28 16 34 27.00

Mean 27.00 28.00 22.33 30.83 27.00

the test is over-powered, which means that even very small violations of the
assumption of sphericity will be detected. In studies with small sample sizes,
the test will be under-powered, i.e. the power to detect a violation of the
assumption of sphericity is too low.
In the next section a numerical example will be given to explain the ‘uni-

variate’ approach within MANOVA for repeated measurements.

3.3.1 The ‘univariate’ approach: a numerical example
Consider the simple longitudinal dataset presented in Table 3.4.
When ignoring the fact that each individual is measured four times, the

question of whether there is a difference between the various time-points can
be answered by applying a simple ANOVA, considering the measurements
at the four time-points as four independent groups. The ANOVA is then
based on a comparison between the ‘between group’ (in this case ‘between
time’) sum of squares (SSb) and the ‘within group’ (i.e. ‘within time’) sum
of squares (SSw). The latter is also known as the ‘overall’ sum of squares or
the ‘error’ sum of squares. The sums of squares are calculated as follows:

SSb = N
T∑

t = 1

( ȳ t − ȳ)2 (3.3)

where N is the number of subjects, T is the number of repeated measure-
ments, ȳ t is the average value of outcome variable Y at time-point t, and ȳ
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is the overall average of outcome variable Y .

SSw =
T∑

t =1

N∑

n=1

(yit − ȳ t)
2 (3.4)

where T is the number of repeated measurements, N is the number of sub-
jects, yit is the value of outcome variable Y for individual i at time-point t,
and ȳ t is the average value of outcome variable Yat time-point t.
Applied to the dataset presented in Table 3.4, SSb = 6[(27 − 27)2 + (28 −

27)2 + (22.33 − 27)2 + (30.83 − 27)2] = 224.79, and SSw = (31 − 27)2 +
(24 − 27)2 + · · · + (29 − 30.83)2 + (34 − 30.83)2 = 676.17.These sumsof
squares are used in the ANOVA’s F-test. In this test it is not the total sums of
squares that are used, but the mean squares. The mean square (MS) is de-
fined as the total sum of squares divided by the degrees of freedom. For SSb,
the degrees of freedom are (T − 1), and for SSw, the degrees of freedom
are (T) × (N − 1). In the numerical example, MSb = 224.79/3 = 74.93
and MSw = 676.17/20 = 33.81. The F-statistic is equal to MSb/MSw and
follows an F-distribution with ((T − 1), (T(N − 1)) degrees of freedom.
Applied to the example, the F-statistic is 2.216 with 3 and 20 degrees of
freedom. The corresponding p-value (which can be found in a table of the
F-distribution, available in all statistical textbooks) is 0.12, i.e. no significant
difference between the four time-points. Output 3.3 shows the results of the
ANOVA, applied to this numerical example.

Output 3.3. Results of an ANOVA with a simple longitudinal dataset,
ignoring the dependency of observations

Source Sum of squares df Mean square F Sig

Between groups 224.792 3 74.931 2.216 0.118

Within groups 676.167 20 33.808

Total 900.958 23

It has already been mentioned that in the above calculation the depend-
ency of the observations was ignored. It was ignored that the same individ-
ual was measured four times. In a design with repeated measurements, the
‘individual’ sum of squares (SSi) can be calculated (Equation (3.5)).

SSi = T
N∑

i=1

(ȳi − ȳ)2 (3.5)
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where T is the number of repeated measurements, N is the number of sub-
jects, ȳi is the average value of outcome variable Y at all time-points for
individual i , and ȳ is the overall average of outcome variable Y .
Applied to the example dataset, SSi = 4[(25.25 − 27)2 + (26 − 27)2 +

· · · + (27 − 27)2] = 276.21. It can be seen that a certain proportion
(276.21/676.17) of the error sum of squares (i.e. the within-time sum of
squares) can be explained by individual differences. So, in this design with
repeated measurements, the total error sum of squares of 676.17 is split into
two components. The part which is due to individual differences (276.21) is
now removed from the error sum of squares for the time effect. The latter is
reduced to 399.96 (i.e. 676.17 − 276.21). The SSb is still the same, because
this sum of squares reflects the differences between the four time-points.
Output 3.4 shows the computer output of this example.

Output 3.4. Results of a MANOVA for repeated measurements with a
simple longitudinal dataset

Within-subjects effects

Source Sum of squares df Mean square F Sig

TIME 224.792 3 74.931 2.810 0.075

Error(TIME) 399.958 15 26.664

Between-subjects effects

Source Sum of squares df Mean square F Sig

Intercept 17550.042 1 17550.042 317.696 0.000

Error 276.208 5 55.242

Asmentioned before for the ANOVA, to carry out the F-test, the total sum
of squares is divided by the degrees of freedom to create the ‘mean square’.
To obtain the appropriate F-statistic, the ‘mean square’ of a certain effect is
dividedby the ‘meansquare’of theerrorof that effect.TheF-statistic isused in
the testingprocedureof that particular effect.As canbe seen fromOutput 3.4,
the SSb is divided by (T − 1) degrees of freedom, while the corresponding
error term is divided by (T − 1) × (N − 1) degrees of freedom. The p-value
is 0.075, which indicates no significant change over time. Note, however,
that this p-value is somewhat lower than the p-value obtained from the
simple ANOVA, in which the dependency of the observations was ignored.
The intercept sum of squares is the sum of squares obtained when an overall
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average of zero is assumed. In this situation, the intercept sum of squares
is useless, but it will be used in the analysis to investigate the shape of the
relationship between the outcome variable Y and time.

3.3.2 The shape of the relationship between an outcome variable and time
In the foregoing sections of this chapter, the question of whether or not
there is a change over time in outcome variable Y was answered. When such
achangeover time is found, this implies that there is somekindof relationship
between the outcome variable Y and time. In this section the shape of the
relationship between outcome variable Y and time will be investigated. In
Figure 3.3 a few possible shapes are illustrated.
It is obvious that this question is only of interest when there are more

than two measurements. When there are only two measurements, the only
possible relationship with time is a linear one. The question about the shape
of the relationship can also be answered by applying MANOVA for repeated
measurements. InMANOVA, the relationship between the outcome variable
Y and time is compared to a hypothetical linear relationship, a hypothetical
quadratic relationship, and so on.When there are T repeatedmeasurements,
T − 1 possible functions with time can be tested. Although every possible

time

arbitrary value

Figure 3.3. A few possible shapes of relationship between an outcome variable Y and time
(�........ linear, •–––––– quadratic, *– – – cubic).
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Table 3.5. Transformation ‘factors’ used to test
different shapes of the relationship between an
outcome variable and time

Linear Quadratic Cubic

Yt1 −0.671 0.500 −0.224

Yt2 −0.224 −0.500 0.671

Yt3 0.224 −0.500 −0.671

Yt4 0.671 0.500 0.224

relationship with time can be tested, it is important to have a certain idea or
hypothesis of the shape of the relationship between the outcome variable
Y and time. It is highly recommended not to test all possible relationships
routinely.
For each possible relationship, an F-statistic is calculated which follows

an F-distribution with (1), (N − 1) degrees of freedom. The shape of the
relationship between the outcome variable and time can only be analysed
with the ‘univariate’ estimation approach. In the following section this will
be illustrated with a numerical example.

3.3.3 A numerical example
Consider the same simple longitudinal dataset that was used in Section 3.3.1.
To answer the question: ‘What is the shape of the relationship between the
outcome variableY and time?’, the outcome variableY must be transformed.
When there are four repeated measurements, Y is transformed into a linear
component, a quadratic component and a cubic component. This trans-
formation is made according to the transformation ‘factors’ presented in
Table 3.5.
Each value of the original dataset is now multiplied by the corresponding

transformation ‘factor’ to create a transformed dataset. Table 3.6 presents
the linear transformed dataset. The asterisk above the name of a variable
indicates that the variable is transformed.
These transformedvariables arenowused to test thedifferent relationships

with time. Assume that one is interested in the possible linear relationship
with time.Therefore, the individual sumof squares for the linear transformed
variables is related to the individual sum of squares calculated when the
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Table 3.6. Original dataset transformed by linear
transformation ‘factors’

i Yt1
∗ Yt2

∗ Yt3
∗ Yt4

∗ Mean

1 −20.8 −6.5 3.4 17.5 −1.62

2 −16.1 −6.3 4.5 21.5 0.89

3 −9.4 −4.5 6.3 20.1 3.13

4 −25.5 −7.6 6.7 22.8 −0.90

5 −16.8 −6.5 5.6 19.5 0.45

6 −20.1 −6.3 3.6 22.8 0.00

Mean 0.33

overall mean value of the transformed variables is assumed to be zero (i.e.
the intercept).
The first step is to calculate the individual sum of squares for the trans-

formed variables according to Equation (3.5). For the transformed dataset
SSi∗ = 4[(−1.62− 0.33)2 + (0.89 − 0.33)2 + · · · + (0.00− 0.33)2]= 54.43.
The next step is to calculate the individual sum of squares when the overall
mean value is assumed to be zero. When this calculation is performed for
the transformed dataset SSi0 = 4[(−1.62 − 0.00)2 + (0.89 − 0.00)2 + · · ·
+ (0.00 − 0.00)2] = 56.96.
The difference between these two individual sums of squares is called the

‘intercept’ and is shown in the computer output (see Output 3.5). In the
example, this intercept is equal to 2.546, and this value is used to test for
the linear development over time. The closer this difference comes to zero,
the less likely it is that there is a linear relationship with time. In the exam-
ple the p-value of the intercept is 0.65,which is far fromsignificance, i.e. there
is no significant linear relationship between the outcome variable and time.

Output 3.5. Results of MANOVA for repeated measurements, applied to the
linear transformed dataset

Between-subjects effects

Source Sum of squares df Mean square F Sig

Intercept 2.546 1 2.546 0.234 0.649

Error 54.425 5 10.885
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When MANOVA for repeated measurements is performed on the orig-
inal dataset used in Section 3.3.1, these transformations are automatically
carried out and the related test values are shown on the output. Because the
estimation procedure is slightly different to that explained here, the sums of
squares given in this output are the sums of squares given in the output (see
Output 3.6) multiplied by T . Because it is basically the same approach, the
levels of significance are exactly the same.

Output 3.6. Results of MANOVA for repeated measurements, applied to the
original dataset, analysing the linear relationship between the outcome
variable and time

Within-subjects contrasts

Source Sum of squares df Mean square F Sig

Time(linear) 10.208 1 10.208 0.235 0.649

Error(linear) 217.442 5 43.488

Exactly the same procedure can be carried out to test for a possible second-
order (quadratic) relationship with time and for a possible third-order
(cubic) relationship with time.

3.3.4 Example
The results of the MANOVA for repeated measurements of a ‘one-within’
design to answer the question of whether there is a change over time in
outcome variableY (using the information of all six repeatedmeasurements)
is shown in Output 3.7.

Output 3.7. Results of MANOVA for repeated measurements; a ‘one-within’ design

Multivariate testsa

Partial Eta

Effect Value F Hypothesis df Error df Sig Squared

TIME Pillai's Trace 0.666 56.615b 5.000 142.000 0.000 0.666

Wilks'Lambda 0.334 56.615b 5.000 142.000 0.000 0.666

Hotelling's Trace 1.993 56.615b 5.000 142.000 0.000 0.666

Roy's Largest Root 1.993 56.615b 5.000 142.000 0.000 0.666

aDesign: Intercept

Within subjects design: TIME
bExact statistic.
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Mauchly’s test of sphericitya

Measure: MEASURE 1

Epsilonb
Within

Subjects Approx. Greenhouse

Effect Mauchly's W Chi-Square df Sig --Geisser Huynh--Feldt Lower-bound

TIME 0.435 119.961 14 0.000 0.741 0.763 0.200

Tests the null hypothesis that the error covariance matrix of the orthonormalized

transformed dependent variables is proportional to an identity matrix.
aDesign: Intercept

Within subjects design: TIME
bMay be used to adjust the degrees of freedom for the averaged tests of

significance. Corrected tests are displayed in the tests of within-subjects effects

table.

Tests of within-subjects effects

Measure: MEASURE 1

Type III

Sum of Mean Partial Eta

Source Squares df Square F Sig Squared

TIME Sphericity Assumed 89.987 5 17.997 99.987 0.000 0.406

Greenhouse--Geisser 89.987 3.707 24.273 99.987 0.000 0.406

Huynh--Feldt 89.987 3.816 23.582 99.987 0.000 0.406

Lower-bound 89.987 1.000 89.987 99.987 0.000 0.406

Error (TIME) Sphericity Assumed 131.398 730 0.180

Greenhouse--Geisser 131.398 541.272 0.243

Huynh--Feldt 131.398 557.126 0.236

Lower-bound 131.398 146.000 0.900

Tests of within-subjects contrasts

Measure: MEASURE 1

Type III Sum Partial Eta

Source TIME of Squares df Mean Square F Sig Squared

TIME Linear 40.332 1 40.332 126.240 0.000 0.464

Quadratic 44.283 1 44.283 191.356 0.000 0.567

Cubic 1.547 1 1.547 11.424 0.001 0.073

Order 4 1.555 1 1.555 12.537 0.001 0.079

Order 5 2.270 1 2.270 25.322 0.000 0.148

Error(TIME) Linear 46.646 146 0.319

Quadratic 33.787 146 0.231

Cubic 19.770 146 0.135

Order 4 18.108 146 0.124

Order 5 13.088 146 8.964 × 10−2
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The first part of the output (multivariate tests) shows directly the answer
to the question ofwhether there is a change over time for outcome variableY ,
somewhere between t = 1 and t = 6. The F-values and the significance levels
are based on themultivariate test. In the output there are severalmultivariate
tests available to test the overall time effect. The various tests are named after
the statisticians who developed the tests, and they all use slightly different
estimation procedures. However, the final conclusions of the various tests
are almost always the same.
The second part of Output 3.7 provides information on whether or not

the assumption of sphericity is met. In this example, the sphericity coeffi-
cient (epsilon) calculated by the Greenhouse–Geisser method is 0.741. The
output also gives other values for ε (Huynh–Feldt and lower-bound), but
these values are seldom used. The value of ε can be tested for significance by
Mauchly’s test of sphericity. The results of this test (p-value 0.000) indicates
that ε is significantly different from the ideal value of one. This indicates
that the degrees of freedom of the F-test should be adjusted. In the com-
puter output presented, this correction is automatically carried out and is
shown in the next part of the output (tests of within-subject effects), which
shows the result of the ‘univariate’ estimation approach. The output of the
‘univariate’ approach gives four different estimates of the overall time ef-
fect. The first estimate is the one which assumes sphericity. The other three
estimates (Greenhouse–Geisser, Huynh–Feldt and lower-bound) adjust for
violations of the assumption of sphericity, by changing the degrees of free-
dom. The three techniques are slightly different, but it is recommended
that the Greenhouse–Geisser adjustment is used, although this adjustment
is slightly conservative. From the output it can be seen that the F-values
and significance levels are equal for all estimation procedures. They are all
highly significant, which indicates that there is a significant change over
time in outcome variable Y . From the output, however, there is no indica-
tion of whether there is an increase, a decrease or whatever; it only shows
a significant difference over time. Within MANOVA for repeated measure-
ments, there is also the possibility to obtain a magnitude of the strength
of the ‘within-subject effect’ (i.e. time). This magnitude is reflected in a
measure called ‘eta squared’, which can be seen as an indicator for the
explained variance in the outcome variable Y due to a particular effect.
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Eta squared is calculated as the ratio between the sum of squares of the
particular effect and the total sum of squares. From the output it can be
seen that eta squared is 0.406 (i.e. 89.99/(131.40 + 89.99)), which indicates
that 41% of the variance in outcome variable Y is explained by the time
effect.
The last part of the output (tests of within-subjects contrasts) provides an

answer to the second question (‘what is the shape of the relationship with
time?’). The first line (linear) indicates the test for a linear development. The
F-value (obtained from the mean square (40.322) divided by the error mean
square (0.319)) is very high (126.240), and is highly significant (0.000). This
result indicates that there is a significant linear development over time. The
following lines show the same values belonging to the other functions with
time. The second line shows the second-order function (i.e. quadratic), the
third line shows the third-order function (i.e. cubic), and so on. All F-values
were significant, indicating that all other developments over time (second-
order, third-order, etc.) are statistically significant. The magnitudes of the
F-values, and the values of eta squared indicate further that the best way to
describe the development over time is a quadratic function, but the more
simple linear function with time is also quite good. Again, from the results
there is no indication of whether there is an increase or a decrease over time.
In fact, the results of the MANOVA for repeated measurements can only be
interpreted correctly if a graphical representation of the change over time is
made. Output 3.8 shows such a graphical representation. The figure shows
that the significant development over time, whichwas foundwithMANOVA
for repeated measurements, is first characterized by a small decrease, which
is followed by an increase over time.
To put the results of the MANOVA for repeated measurements in a some-

what broader perspective, the results of a ‘naive’ analysis are shown in
Output 3.9, naive in the sense that the dependency of the repeated obser-
vations within one subject is ignored. Such a naive analysis is an analysis
of variance (ANOVA), in which the mean values of outcome variable Y are
compared among all six measurements, i.e. six groups, each representing
one time-point. For only two measurements, this comparison would be the
same as the comparison between an independent sample t-test (the naive
approach) and a paired t-test (the adjusted approach).
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Output 3.8. Results of the MANOVA for repeated measurements; graphical
representation of a ‘one-within’ design
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From Output 3.9 it can be seen that the F-statistic for the time effect
(the effect in which we are interested) is 32.199, which is highly significant
(0.000). This result indicates that at least one of the mean values of outcome
variable Y at a certain time-point is significantly different from the mean
value of outcome variable Y at one of the other time-points. However, as
mentioned before, this approach ignores the fact that a longitudinal study is
performed, i.e. that the same subjects aremeasured on several occasions. The
most important difference between MANOVA for repeated measurements
and the naive ANOVA is that the ‘error sum of squares’ in the ANOVA is
much higher than the ‘error sum of squares’ in the MANOVA for repeated
measurements. In the ANOVA this ‘error sum of squares’ (indicated by the
residual mean square) is 0.559 (see Output 3.9), while for the MANOVA
for repeated measurements this ‘error sum of squares’ (indicated by Error
(TIME) Sphericity Assumed) wasmore than three times lower, i.e. 0.180 (see
Output 3.7).
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Output 3.9. Results of a (naive) analysis of variance (ANOVA), ignoring the
dependency of observations

Analysis of Variance

Y OUTCOME VARIABLE Y AT T1 TO T6

BY TIME

Sum of Mean Signif

Source of Variation Squares DF Square F of F

Main Effects 89.987 5 17.997 32.199 0.000

TIME 89.987 5 17.997 32.199 0.000

Explained 89.987 5 17.997 32.199 0.000

Residual 489.630 876 0.559

Total 579.617 881 0.658

3.4 The ‘univariate’ or the ‘multivariate’ approach?

Within MANOVA for repeated measurements a distinction can be made
between the ‘multivariate’ approach (the multivariate extension of a paired
t-test) and the ‘univariate’ approach (an extension of ANOVA). The problem
is that the two approaches do not produce the same results. So the question
is: Which approach should be used?
One of the differences between the two approaches is the assumption of

sphericity. For the ‘multivariate’ approach this assumption is not necessary,
while for the ‘univariate’ approach it is an important assumption. The re-
striction of the assumption of sphericity (i.e. equal correlations and equal
variances over time) leads to an increase in degrees of freedom, i.e. an in-
crease in power for the ‘univariate’ approach. This increase in power becomes
more important when the sample size becomes smaller. The ‘multivariate’
approach was developed later than the ‘univariate’ approach, especially for
situations when the assumption of sphericity does not hold. So, one could
argue that when the assumption of sphericity is violated, the ‘multivariate’
approach should be used. However, in the ‘univariate’ approach, adjust-
ments can be made when the assumption of sphericity is not met. So, in
principle, both approaches can deal with a situation in which the assump-
tionof sphericitydoesnothold. It is sometimesargued thatwhen thenumber
of subjects N is less than the number of (repeated) measurements plus 10,
the ‘multivariate’ approach should not be used. In every other situation,
however, it is recommended that the results of both the ‘multivariate’ and
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the ‘univariate’ approach are used to obtain the most ‘valid’ answer to the
research question addressed. Only when both approaches produce the same
results, it is fairly certain that there is either a significant or a non-significant
change over time. When both approaches produce different results, the con-
clusions must be drawn with many restrictions and considerable caution. In
such a situation, it is highly recommended not to use the approach with the
lowest p-value!

3.5 Comparing groups

In the first sections of this chapter longitudinal studies were discussed in
which one continuous outcome variable is repeatedly measured over time
(i.e. the ‘one-within’ design). In this section the research situationwill be dis-
cussed in which the development of a certain continuous outcome variable
Y is compared between different groups. This design is known as the ‘one-
within, one-between’ design. Time is the within-subject factor and the group
variable is the between-subjects factor (Figure 3.4). This group indicator can
be either dichotomous or categorical. The question to be addressed is: ‘Is
there a difference in change over time for outcome variable Y between two
or more groups?’ This question can also be answered with MANOVA for
repeated measurements. The same assumptions as have been mentioned

time

arbitrary value

1 2 3 4 5 6

Figure 3.4. A longitudinal ‘one-within, one-between’ design with six repeated measurements
measured in two groups (�–––––––- group 1, •– – – group 2).
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earlier (Section 3.3) apply for this design, but it is also assumed that the
covariance matrices of the different groups that are compared to each other
are homogeneous. This assumption is comparable with the assumption of
equal variances in two groups that are cross-sectionally compared with each
other using the independent sample t-test. Although this is an important
assumption, in reasonably large samples a violation of this assumption is
generally not problematic.
From a ‘one-within, one-between’ design the following ‘effects’ can be

obtained: (1) an overall time effect, i.e. ‘is there a change over time in out-
come variable Y for the total population?’, (2) a general group effect, i.e. ‘is
there on average a difference in outcome variable Y between the compared
groups?’, (3) a group by time interaction effect, i.e. ‘is the change over time
inoutcomevariableY different for thecomparedgroups?’Thewithin-subject
effects can be calculated in two ways: the ‘multivariate’ approach, which is
based on the multivariate analysis of the differences between subsequent
points ofmeasurements, and the ‘univariate’ approach, which is based on the
comparison of several sums of squares (see Section 3.5.1). In epidemiological
longitudinal studies the group by time interaction effect is probably themost
interesting, because it gives an answer to the question of whether there is a
difference in change over time between groups.
With respect to the shape of the relationship with time (linear, quadratic,

etc.) specificquestionscanalsobeanswered for the ‘one-within,one-between’
design, such as ‘is there a difference in the linear relationship with time be-
tween the groups?’, ‘is there a difference in the quadratic relationship with
time?’, etc. However, especially for interaction terms, the answers to those
questions can be quite complicated, i.e. the results of the MANOVA for
repeated measurements can be very difficult to interpret.
It should be noted that an important limitation of MANOVA for re-

peated measurements is that the between-subjects factor can only be a time-
independent dichotomous or categorical variable, such as treatment group,
gender, etc.

3.5.1 The ‘univariate’ approach: a numerical example
The simple longitudinal dataset used to illustrate the ‘univariate’ approach in
a ‘one-within’ design will also be used to illustrate the ‘univariate’ approach
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Table 3.7. Hypothetical longitudinal dataset with four measurements
in six subjects divided into two groups

i Group Yt1 Yt2 Yt3 Yt4 Mean

1 1 31 29 15 26 25.25

2 1 24 28 20 32 26.00

3 1 14 20 28 30 23.00

Mean 23.00 25.67 21.00 29.33 24.75

4 2 38 34 30 34 34.00

5 2 25 29 25 29 27.00

6 2 30 28 16 34 27.00

Mean 31.00 30.33 23.67 32.33 29.33

in a ‘one-within, one-between’ design. Therefore, the dataset used in the
earlier example, and presented in Table 3.4, is extended to include a group
indicator. The ‘new’ dataset is presented in Table 3.7.
To estimate the different ‘effects’, it should first be noted that part of the

overall ‘error sum of squares’ is related to the differences between the two
groups. To calculate this part, the sum of squares for individuals (SSi) must
be calculated for each of the groups (see Equation (3.5)). For group 1, SSi =
3[(25.25 − 24.75)2 + (26 − 24.75)2 + (23 − 24.75)2] = 19.5, and for
group 2, SSi = 3[(34 − 29.33)2 + (27 − 29.33)2 + (27 − 29.33)2] = 130.7.
These two parts can be added together to give an overall ‘error sum

of squares’ of 150.2. If the group indication is ignored, the overall ‘error
sum of squares’ is 276.2 (see Section 3.3.1). This means that the between-
subjects sum of squares caused by group differences is 126.0 (i.e. 276.2 −
150.2). The next step is to calculate the SSw and the SSb for each group.
This can be done in the same way as has been described for the whole
population (see Equations (3.3) and (3.4)). The results are summarized in
Table 3.8.
The two within-subject ‘error sums of squares’ can be added together to

form the overall within-subject error sum of squares (corrected for group).
This total within-subject error sum of squares is 373.17. Without taking the
group differentiation into account, a within-subject error sum of squares
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Table 3.8. Summary of the different sums of squares calculated
for each group separately

Group 1 Group 2

SSb 116.9 134.7

SSw 299.3 224.0

SSi 19.5 130.7

Within-subject error 299.3 − 19.5 = 279.83 224.0 − 130.7 = 93.33

sum of squares

of 399.96 was found. The difference between the two is the sum of squares
belonging to the interaction between the within-subject factor ‘time’ and
the between-subject factor ‘group’. This sum of squares is 26.79. Output 3.10
shows the computerized results of theMANOVA for repeatedmeasurements
for this numerical example.

Output 3.10. Results of MANOVA for repeated measurements for a simple
longitudinal dataset with a group indicator

Within-subjects effects

Source Sum of squares df Mean square F Sig

TIME 224.792 3 74.931 2.810 0.075

TIME × GROUP 26.792 3 8.931 0.287 0.834

Error(TIME) 373.167 12 31.097

Between-subjects effects

Source Sum of squares df Mean square F Sig

Intercept 17550.042 1 17550.042 317.696 0.000

GROUP 126.042 1 126.042 3.357 0.141

Error 150.167 4 37.542

3.5.2 Example
In the example dataset, X4 is a dichotomous time-independent predictor
variable (i.e. gender), so this variablewill be used as a between-subjects factor
in this example.The resultsof theMANOVAfor repeatedmeasurements from
a ‘one-within, one-between’ design are shown in Output 3.11.
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Output 3.11. Results of MANOVA for repeated measurements; a ‘one-within,
one-between’ design

Tests of between-subjects effects
Measure: MEASURE 1

Transformed Variable: Average

Type III Sum Partial Eta

Source of Squares df Mean Square F Sig Squared

Intercept 17715.454 1 17715.454 7486.233 0.000 0.981

X4 15.103 1 15.103 6.382 0.013 0.042

Error 343.129 145 2.366

Multivariate testsa

Partial Eta

Effect Value F Hypothesis df Error df Sig Squared

TIME Pillai's Trace 0.669 56.881b 5.000 141.000 0.000 0.669

Wilks' Lambda 0.331 56.881b 5.000 141.000 0.000 0.669

Hotelling's Trace 2.017 56.881b 5.000 141.000 0.000 0.669

Roy's Largest Root 2.017 56.881b 5.000 141.000 0.000 0.669

TIME * X4 Pillai's Trace 0.242 8.980b 5.000 141.000 0.000 0.242

Wilks' Lambda 0.758 8.980b 5.000 141.000 0.000 0.242

Hotelling's Trace 0.318 8.980b 5.000 141.000 0.000 0.242

Roy's Largest Root 0.318 8.980b 5.000 141.000 0.000 0.242

aDesign: Intercept + X4

Within subjects design: TIME
bExact statistic.

Mauchly’s test of sphericitya

Measure: MEASURE 1

Epsilonb
Within

Subjects Approx. Greenhouse

Effect Mauchly's W Chi-Square df Sig --Geisser Huynh--Feldt Lower-bound

TIME 0.433 119.736 14 0.000 0.722 0.748 0.200

Tests the null hypothesis that the error covariance matrix of the orthonormalized

transformed dependent variables is proportional to an identity matrix.
aDesign: Intercept+X4

Within subjects design: TIME
bMay be used to adjust the degrees of freedom for the averaged tests of

significance. Corrected tests are displayed in the tests of within-subjects

effects table.
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Tests of within-subjects effects
Measure: MEASURE 1

Type III

Sum of Mean Partial Eta

Source Squares df Square F Sig Squared

TIME Sphericity Assumed 89.546 5 17.909 104.344 0.000 0.418

Greenhouse--Geisser 89.546 3.612 24.793 104.344 0.000 0.418

Huynh--Feldt 89.546 3.741 23.937 104.344 0.000 0.418

Lower-bound 89.546 1.000 89.546 104.344 0.000 0.418

TIME ∗ X4 Sphericity Assumed 6.962 5 1.392 8.113 0.000 0.053

Greenhouse--Geisser 6.962 3.612 1.928 8.113 0.000 0.053

Huynh--Feldt 6.962 3.741 1.861 8.113 0.000 0.053

Lower-bound 6.962 1.000 6.962 8.113 0.005 0.053

Error (TIME) Sphericity Assumed 124.436 725 0.172

Greenhouse--Geisser 124.436 523.707 0.238

Huynh--Feldt 124.436 542.443 0.229

Lower-bound 124.436 145.000 0.858

Tests of within-subjects contrasts
Measure: MEASURE 1

Type III Sum Partial Eta

Source TIME of Squares df Mean Square F Sig Squared

TIME Linear 38.668 1 38.668 131.084 0.000 0.475

Quadratic 45.502 1 45.502 213.307 0.000 0.595

Cubic 1.602 1 1.602 11.838 0.001 0.075

Order 4 1.562 1 1.562 12.516 0.001 0.079

Order 5 2.212 1 2.212 24.645 0.000 0.145

TIME ∗ X4 Linear 3.872 1 3.872 13.127 0.000 0.083

Quadratic 2.856 1 2.856 13.388 0.000 0.085

Cubic 0.154 1 0.154 1.142 0.287 0.008

Order 4 7.533 × 10-3 1 7.533 × 10-3 0.060 0.806 0.000

Order 5 7.216 × 10-2 1 7.216 × 10-2 0.804 0.371 0.006

Error (TIME) Linear 42.773 145 0.295

Quadratic 30.931 145 0.213

Cubic 19.616 145 0.135

Order 4 18.100 145 0.125

Order 5 13.016 145 8.976 × 10-2
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Part of the Output 3.11 is comparable to the output of the ‘one-within’
design, shown inOutput 3.7. Themajor difference is found in the first part of
theoutput, inwhich the resultof the ‘testsofbetween-subjects effects’ is given.
The F-value belonging to this test is 6.382 and the significance level is 0.013,
which indicates that there is an overall (i.e. averaged over time) difference
between the two groups indicated by X4. The other difference between the
twooutputs is the addition of a time by X4(TIME∗X4) interaction term.This
interaction is interesting, because it answers the questionofwhether there is a
difference in development over time between the two groups indicated by X4

(i.e. the difference in developments betweenmales and females). The answer
to that question can either be obtained with the ‘multivariate’ approach
(Pillai, Wilks, Hotelling, and Roy) or with the ‘univariate’ approach. For the
‘multivariate’ approach (multivariate tests), firstly the overall time effect is
given and secondly the time by X4 interaction. For the ‘univariate’ approach,
again the assumption of sphericity has to hold and from the output it can
be seen that this is not the case (Greenhouse–Geisser ε = 0.722, and the
significance of the sphericity test is 0.000). For this reason, in the univariate
approach it is recommended that the Greenhouse–Geisser adjustment is
used. From the output of the univariate analysis, firstly the overall time effect
(F = 104.344, significance 0.000) and secondly the time by X4 interaction
effect (F = 8.113, significance 0.000) can be obtained. This result indicates
that there is a significant difference in development over time between the
two groups indicated by X4.
From the next part of Output 3.11 (tests of within-subjects contrasts) it

can be seen that this difference is significant for both the linear development
over time and the quadratic development over time.
For all three effects, the explained variances are also given as an indicator

of the magnitude of the effect. In this example it can be seen that 42% of
the variance in outcome variable Y is explained by the ‘time effect’, that 5%
is explained by the ‘time by X4 interaction’, and that 4% of the variance in
outcome variable Y is explained by the ‘overall group effect’. Care must be
taken in the interpretation of these explained variances, because they cannot
be interpreted together in a straightforward way. The explained variances
for the time effect and the time–group interaction effect are only related to
the within-subject ‘error sum of squares’, and not to the total ‘error sum of
squares’.
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As in the case for the ‘one-within’ design, the results of the MANOVA for
repeated measurements for a ‘one-within, one-between’ design can only be
interpreted correctly when a graphical representation is added to the results
(see Output 3.12).

Output 3.12. Results of MANOVA for repeated measurements; graphical
representation of a ‘one-within, one-between’ design (X4, –––––––- males, – – –
females)
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3.6 Comments

One of the problems with MANOVA for repeated measurements is that the
time periods under consideration are weighted equally. A non-significant
change over a short time period can be relatively greater than a significant
change over a long time period. So, when the time periods are unequally
spaced, the results of MANOVA for repeated measurements cannot be in-
terpreted in a straightforward way. The length of the different time intervals
must be taken into account.
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Anothermajor problemwithMANOVAfor repeatedmeasurements is that
it only takes into account the subjects with complete data, i.e. the subjects
who are measured at all time-points. When a subject has no data available
for a certain time-point, all other data for that subject are deleted from the
analysis. In Chapter 10, the problems and consequences of missing data
in longitudinal studies and in the results obtained from a MANOVA for
repeated measurements analysis will be discussed. MANOVA for repeated
measurements can also be used for more complex study designs, i.e. with
more ‘within-subject’ and/or more ‘between-subjects’ factors. Because the
ideas and the potential questions to be answered are the same as in the
relatively simple designs discussed before, the more complex designs will
not be discussed further. It should be kept in mind that the more groups
that are compared to each other (given a certain number of subjects), or the
more factors that are included in the design, the less power there will be to
detect significant effects. This is important, because MANOVA for repeated
measurements is basically a testing technique, so p-values areused to evaluate
longitudinal relationships. In principle, no interesting effect estimations are
provided by the procedure of theMANOVA for repeatedmeasurements. The
explained variances can be calculated, but the importance of this indicator
is rather limited.

3.7 Post-hoc procedures

With MANOVA for repeated measurements an ‘overall’ time effect and an
‘overall’ group effect can be obtained. As in cross-sectional ANOVA, post-
hoc procedures can be performed to investigate further the observed ‘overall’
relationships. In longitudinal analysis there are two types of these post-hoc
procedures. (1) When there are more than two repeated measurements, it
can be determined inwhich part of the longitudinal time period the observed
‘effects’ occur. This can be done by performingMANOVA for repeatedmeas-
urements for a specific (shorter) time period. (2) When there are more than
two groups for which the longitudinal relationship is analysed, a statistic-
ally significant ‘between-subjects effect’ indicates that there is a difference
between at least two of the compared groups. Further analysis can determine
between which groups the differences occur. This can be carried out by
applying the post-hoc procedures also used in the cross-sectional ANOVA
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(e.g. Tukey procedure, Bonferroni procedure and Scheffe procedure). Each
technique has is own particularities, but in essence multiple comparisons
are made between all groups; each group is pairwise compared to the other
groups.

3.7.1 Example
Output 3.13 shows a typical output of a post-hoc procedure following
MANOVA for repeatedmeasurements comparing three groups (the data are
derived from a hypothetical dataset which will not be discussed any further).

Output 3.13. Results of three post-hoc procedures in MANOVA for repeated
measurements

Between-subjects effects

Source Sum of squares df Mean square F Sig

Intercept 17845.743 1 17845.743 8091.311 0.000

GROUP 40.364 2 20.317 9.221 0.000

Error 317.598 144 2.206

Post-hoc tests

Group1 Group2 Mean difference (1 − 2) Std error Sig

--------------------------------------------------------------------------

Tukey 1 2 -8.361 × 10-2 0.1225 0.774

3 -0.4913 0.1225 0.000

2 1 -8.361 × 10-2 0.1225 0.774

3 -0.4077 0.1225 0.003

3 1 0.4913 0.1225 0.000

2 0.4077 0.1225 0.003

Scheffe 1 2 -8.361 × 10-2 0.1225 0.793

3 -0.4913 0.1225 0.000

2 1 -8.361 × 10-2 0.1225 0.793

3 -0.4077 0.1225 0.005

3 1 0.4913 0.1225 0.000

2 0.4077 0.1225 0.005

Bonferroni 1 2 -8.361 × 10-2 0.1225 1.00

3 -0.4913 0.1225 0.000

2 1 -8.361 × 10-2 0.1225 1.00

3 -0.4077 0.1225 0.003

3 1 0.4913 0.1225 0.000

2 0.4077 0.1225 0.003
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The structure of the first part of the output is similar to the outputs
discussed before. It shows the overall between-subjects group effect. The
p-value belonging to this group effect is highly significant. The interpreta-
tion of this result is that there is at least one significant difference between two
of the three groups, but this overall result gives no information about which
groups actually differ from each other. To obtain an answer to that question,
a post-hoc procedure can be carried out. In the output, the results of the
three most commonly used post-hoc procedures are given. The first column
of the output gives the name of the post-hoc procedure (Tukey, Scheffe and
Bonferroni). The second and third columns show the pairwise comparisons
that are made, and the fourth and fifth columns give the overall mean differ-
ence between the compared groups and the standard error of that difference.
The last column gives the p-value of the pairwise comparison. One must re-
alize that these post-hoc procedures deal with the overall between-subjects
group effect, i.e. the difference between the average value over the different
time-points. To obtain an answer to the question in which part of the lon-
gitudinal period the observed relationships occurred, a MANOVA can be
performed for specific time periods.
Ascanbe seen fromtheoutput, thereareonlymarginaldifferencesbetween

the three post-hoc procedures (in most research situations this will be the
case). It can be seen that groups 1 and 2 do not differ from each other, but
that the average value of group 3 is totally different from that of the other
two groups.

3.8 Different contrasts

In an earlier part of this chapter, attentionwaspaid to answering thequestion:
‘What is the shape of the relationship between outcome variable Y and
time?’ In the example it was mentioned that the answer to that question
can be found in the output section: test of within-subject contrasts. In the
example a so-called ‘polynomial’ contrast was used in order to investigate
whether one is dealing with a linear relationship with time, a quadratic
relationship with time, and so on. In longitudinal research this is by far
the most important contrast, but there are many other possible contrasts
(depending on the software package used). With a ‘simple’ contrast, for
instance, the value at each measurement is related to the first measurement.
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With a ‘difference’ contrast, the value of each measurement is compared to
theaverageof allpreviousmeasurements.A ‘Helmert’ contrast is comparable
to the ‘difference’ contrast, however, the value at a particularmeasurement is
compared to theaverageof all subsequentmeasurements.With the ‘repeated’
contrast, the value of each measurement is compared to the value of the first
subsequent measurement. In Section 3.3 it was mentioned that the testing
of a ‘polynomial’ contrast was based on transformed variables. In fact, the
testing of all contrasts is based on transformed variables. However, for each
contrast, different transformation coefficients are used.

3.8.1 Example
Outputs 3.14a to 3.14d show the results of MANOVA for repeated measure-
mentswithdifferent contrasts performedon the example dataset. Theoutput
obtained from the analysis with a polynomial contrast was already shown in
Section 3.4 (Output 3.7).
Withthe ‘simple’contrast, eachmeasurement iscomparedtothefirstmeas-

urement. FromOutput 3.14a it can be seen that all follow-upmeasurements
differ significantly from the first measurement. From the output, however, it
cannot be seen whether the value at t = 2 is higher than the value at t = 1.
It can only be concluded that there is a significant difference.
With the ‘difference’ contrast, the value at eachmeasurement is compared

to the average value of all previous measurements. From Output 3.14b it
can be seen that there is a significant difference between the value at each
measurement and the average value of all previous measurements.
With the ‘Helmert’ contrast (Output 3.14c), the same procedure is carried

out as with the ‘difference’ contrast, only the other way around. The value at
each measurement is compared to the average value of all subsequent meas-
urements. All these differences are also highly significant.Only if we compare
the first measurement with the average value of the other fivemeasurements,
is the p-value of borderline significance (0.047).
With the ‘repeated’ contrast, the value of each measurement is compared

to the value of the first subsequent measurement. From Output 3.14d it can
be seen that the value of outcome variable Y at t = 2 is not significantly
different to the value of outcome variable Y at t = 3 (p = 0.136). All the
other differences investigated were statistically significant. Again, it must be
stressed that there is no information about whether the value at a particular
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time-point ishigheror lower than thevalueat thefirst subsequent time-point.
Like all other results obtained from MANOVA for repeated measurements,
the results of the analysis with different contrasts can only be interpreted
correctly if they are combined with a graphical representation of the devel-
opment of outcome variable Y .

Output 3.14a. Results of MANOVA for repeated measurements with a ‘simple’
contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig

Level2 vs Level1 1.830 1 1.830 8.345 0.004

Level3 vs Level1 4.184 1 4.184 14.792 0.000

Level4 vs Level1 10.031 1 10.031 32.096 0.000

Level5 vs Level1 8.139 1 8.139 20.629 0.000

Level6 vs Level1 69.353 1 69.353 120.144 0.000

Error

Level2 vs Level1 32.010 146 0.219

Level3 vs Level1 41.296 146 0.283

Level4 vs Level1 45.629 146 0.313

Level5 vs Level1 57.606 146 0.395

Level6 vs Level1 84.279 146 0.577

Output 3.14b. Results of MANOVA for repeated measurements with a
‘difference’ contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig

Level1 vs Level2 1.830 1 1.830 8.345 0.004

Level2 vs Previous 1.875 1 1.875 9.679 0.002

Level3 vs Previous 4.139 1 4.139 28.639 0.000

Level4 vs Previous 20.198 1 20.198 79.380 0.000

Level5 vs Previous 82.271 1 82.271 196.280 0.000

Error

Level1 vs Level2 32.010 146 0.219

Level2 vs Previous 28.260 146 0.194

Level3 vs Previous 21.101 146 0.145

Level4 vs Previous 37.150 146 0.254

Level5 vs Previous 61.196 146 0.419
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Output 3.14c. Results of MANOVA for repeated measurements with a
‘Helmert’ contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig

Level1 vs Later 0.852 1 0.852 4.005 0.047

Level2 vs Later 8.092 1 8.092 41.189 0.000

Level3 vs Later 22.247 1 22.247 113.533 0.000

Level4 vs Later 76.695 1 76.695 277.405 0.000

Level5 vs Level6 29.975 1 29.975 63.983 0.000

Error

Level1 vs Later 31.061 146 0.213

Level2 vs Later 28.684 146 0.196

Level3 vs Later 28.609 146 0.196

Level4 vs Later 40.365 146 0.276

Level5 vs Level6 68.399 146 0.468

Output 3.14d. Results of MANOVA for repeated measurements with a
‘repeated’ contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig

Level1 vs Level2 1.830 1 1.830 8.345 0.004

Level2 vs Level3 0.480 1 0.480 2.242 0.136

Level3 vs Level4 1.258 1 1.258 8.282 0.005

Level4 vs Level5 36.242 1 36.242 125.877 0.000

Level5 vs Level6 29.975 1 29.975 63.983 0.000

Error

Level1 vs Level2 32.010 146 0.219

Level2 vs Level3 31.260 146 0.214

Level3 vs Level4 22.182 146 0.152

Level4 vs Level5 42.036 146 0.288

Level5 vs Level6 68.399 146 0.468

When there are more than two groups to be compared with MANOVA
for repeated measurements, contrasts can also be used to perform post-
hoc procedures for the ‘overall’ group effect. With the traditional post-hoc
procedures discussed in Section 3.7 all groups are pairwise compared, while
with contrasts this is not the case. With a ‘simple’ contrast for instance, the
groups are compared to a certain reference category, and with a ‘repeated’
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contrast each group is compared to the next group (dependent on the coding
of the group variable). The advantage of contrasts in performing post-hoc
procedures is when a correction for certain covariates is applied. In that
situation, the traditional post-hoc procedures cannot be performed, while
with contrasts, the adjusted difference between groups can be obtained.
Again, it is important to realize that the post-hoc procedures performedwith
different contrasts are only suitable (as the traditional post-hoc procedures)
for analysing the ‘between-subjects’ effect.

3.9 Non-parametric equivalent of MANOVA for repeated
measurements

When the assumptions of MANOVA for repeated measurements are viol-
ated, an alternative non-parametric approach can be applied. This non-
parametric equivalent of MANOVA for repeated measurements is called
the Friedman test and can only be used in a ‘one-within’ design. Like any
other non-parametric test, the Friedman test does notmake any assumptions
about the distribution of the outcome variable under study. To perform the
Friedman test, for each subject the outcome variable at T time-points is
ranked from 1 to T . The Friedman test statistic is based on these rankings.
In fact, the mean rankings (averaged over all subjects) at each time-point are
compared to each other. The idea behind the Friedman test is that the ob-
served rankings are compared to the expected rankings, assuming there is no
change over time. The Friedman test statistic can be calculated according to
Equation (3.6):

H =
12

T∑

t=1
R2
t

NT (T + 1)
− 3N (T + 1) (3.6)

where H is the Friedman test statistic, Rt is the sum of the ranks at time-
point t, N is the number of subjects, and T is the number of repeated
measurements.
To illustrate this non-parametric test, consider again the hypothetical

dataset presented earlier in Table 3.4. In Table 3.9 the ranks of this dataset
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Table 3.9. Absolute values and ranks (in parentheses) of the
hypothetical dataset presented in Table 3.4

i Yt1(rank) Yt2(rank) Yt3(rank) Yt4(rank)

1 31 (4) 29 (3) 15 (1) 26 (2)

2 24 (2) 28 (3) 20 (1) 32 (4)

3 14 (1) 20 (2) 28 (3) 30 (4)

4 38 (4) 34 (2.5) 30 (1) 34 (2.5)

5 25 (1.5) 29 (3.5) 25 (1.5) 29 (3.5)

6 30 (3) 28 (2) 16 (1) 34 (4)

Total rank 15.5 16 8.5 20

are presented. Applied to the (simple) longitudinal dataset the Friedman test
statistic (H) is equal to:

12(15.52 + 162 + 8.52 + 202)

6 × 4 × 5
− 3 × 6 × 5 = 6.85

This value follows a χ2 distribution with T − 1 degrees of freedom. The
corresponding p-value is 0.077. When this p-value is compared to the value
obtained from a MANOVA for repeated measurements (see Output 3.4) it
can be seen that they are almost the same. That the p-value from the non-
parametric test is slightly higher than the p-value from the parametric test
has to do with the fact that non-parametric tests are in general less powerful
than the parametric equivalents.

3.9.1 Example
Because the number of subjects in the example dataset is reasonably high,
in practice the Friedman test will not be used in this situation. However,
for educational purposes the non-parametric Friedman test will be used to
answer the question of whether there is a development over time in outcome
variable Y . Output 3.15 shows the results of this analysis.
From the output it can be seen that there is a significant difference be-

tween themeasurements at different time-points.Theχ2 statistic is 244.1535,
and with five degrees of freedom (the number of measurements minus
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Output 3.15. Output of the non-parametric Friedman test

Friedman Two-way ANOVA

Mean Rank Variable

3.49 YT1 OUTCOME VARIABLE Y AT T1

2.93 YT2 OUTCOME VARIABLE Y AT T2

2.79 YT3 OUTCOME VARIABLE Y AT T3

2.32 YT4 OUTCOME VARIABLE Y AT T4

4.23 YT5 OUTCOME VARIABLE Y AT T5

5.24 YT6 OUTCOME VARIABLE Y AT T6

Cases Chi-Square DF Significance

147 244.1535 5 0.0000

one) this value is highly significant, i.e. a similar result to that found with the
MANOVA for repeated measurements. The Friedman test statistic gives no
direct information about the direction of the development, although from
themean rankings it can be seen that a decrease from the second to the fourth
measurement is followed by an increase at the fifth and sixth measurements.
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Continuous outcome variables —
relationships with other variables

4.1 Introduction

Withapaired t-test andMANOVAfor repeatedmeasurements it is possible to
investigate changes in one continuous variable over time and to compare the
development of a continuous variable over time between different groups.
These methods, however, are not suitable for analysis of the relationship
between the developments of two continuous variables or for analysis of the
relationship between a continuous outcome variable and several predictor
variables,whichcanbeeithercontinuous,dichotomousorcategorical.Before
the development of ‘sophisticated’ statistical techniques such as generalized
estimating equations (GEE) and random coefficient analysis, ‘traditional’
methods were used to analyse longitudinal data. The general idea of these
‘traditional’ methods was to reduce the statistical longitudinal problem into
a cross-sectional problem. Even nowadays these (limited) approaches are
often used in the analysis of longitudinal data.

4.2 ‘Traditional’ methods

The greatest advantage of the ‘traditional’ methods is that simple cross-
sectional statistical techniques can be used to analyse the longitudinal data.
The most commonly used technique for reducing the longitudinal problem
to a cross-sectional problem is analysis of the relationships between changes
in different parameters between two points in time (Figure 4.1). Because of
its importance and its widespread use, a detailed discussion of the analysis
of changes is given in Chapter 8.
Another traditional method with which to analyse the longitudinal rela-

tionship between several variables is the use of a single measurement at the
end of the longitudinal period as outcome variable. This outcome variable is

55
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Figure 4.1. Changes in outcome variable Y between two subsequent measurements are

related to changes in one or more predictor variable(s) X over the same time
period.
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Figure 4.2. ‘Long-term exposure’ to one or more predictor variable(s) X related to a single
measurement of outcome variable Y.

then related to a so-called ‘long-termexposure’ to certain predictor variables,
measured along the total longitudinal period (Figure 4.2).
It is obvious that a limitation of both methods is that if there are more

than two measurements, not all available longitudinal data are used in the
analysis. Another cross-sectional possibility for analysing the longitudinal
relationship between an outcome variableY and (several) predictor variables
X , using all the data, is to use individual regression lines with time. The
first step in this procedure is to calculate the linear regression between the
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outcome variable Y and time for each subject. The regression coefficient
with time (which is referred to as the slope) can be seen as an indicator for
the change over the whole measurement period in the outcome variable Y .
This regression coefficient with time is then used as the outcome variable in
a cross-sectional regression analysis, in order to investigate the longitudinal
relationship with other variables. The same procedure can be followed for
the time-dependent predictor variables in order to analyse the relationship
between the change in outcome variable Y and the change in the time-
dependent predictor variables. However, the baseline value of the predictor
variables can also be used in the final cross-sectional regression analysis. In
the latter case it is obvious that a different research question is answered.
The greatest disadvantage of this technique is the assumption of a linear
relationship between the outcome variableY and time, although it is possible
to model a different individual regression function with time. Furthermore,
it is questionable howwell the individual regression line (or function), which
is usually based on a few data points, fits the observed data.

4.3 Example

To illustrate the first ‘cross-sectional’ technique that can be used to analyse
the longitudinal relationship between a continuous outcome variable Y and
several predictor variables X (Figure 4.1), the change between Yt1 and Yt6 is
first calculated. In the next step the changes in the time-dependent predictor
variables X2 and X3 must be calculated. For X3, which is a dichotomous
predictor variable, this is rather difficult, because the interpretation of the
changes is not straightforward. In Chapter 8 this problem will be discussed
further. In this example, the subjects were divided (according to X3) into
subjects who remained in the lowest category or ‘decreased’ between t = 1
and t = 6 (i.e. the non-smokers and the subjects who quitted smoking), and
subjects who remained in the highest category or ‘increased’ between t = 1
and t = 6 (i.e. the ever-smokers and the subjects who started to smoke).
Because the longitudinal problem is reduced into a cross-sectional problem,
the relationships can be analysed with simple linear regression analysis. The
result of the analysis is shown in Output 4.1.
Because the longitudinal problem is reduced to a cross-sectional problem,

and the data are analysed with simple cross-sectional regression analysis,
the regression coefficient can be interpreted in a straightforward way. For
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Output 4.1. Results of a linear regression analysis relating changes in
predictor variables to changes in outcome variable Y between t = 1 and t = 6

Standardized

B Std. error coefficient t Sig
----------------------------------------------------------------
Constant -0.140 0.851 -0.165 0.870

X1 0.127 0.348 0.037 0.364 0.716

DELX2 0.046 0.044 0.087 1.055 0.293

DELX3 -0.051 0.141 -0.030 -0.364 0.716

X4 0.359 0.153 0.236 2.341 0.021
----------------------------------------------------------------
Dependent variable: DELY

instance, the regression coefficient for X4 indicates that the difference be-
tween Y at t = 1 and Y at t = 6 is 0.359 higher for the group indicated by
X4 = 2 (i.e. females) compared to the group indicatedby X4 = 1 (i.e.males).
The second cross-sectional technique is slightly different. In this method

‘long-term exposure’ to the predictor variables X is related to the outcome
variable Y at t = 6 (Figure 4.2). For the time-dependent predictor variable
X2, the average of the six measurements was used as indicator for ‘long-
term exposure’. For the dichotomous predictor variable X3, the ‘long-term
exposure’ is coded as 0 when subjects report 0 (i.e. non-smoking) at all
measurements, and coded 1 when subjects report 1 (i.e. smoking) at least
at one of the measurements. The result of the linear regression analysis is
shown in Output 4.2.

Output 4.2. Results of a linear regression analysis relating ‘long-term
exposure’ to predictor variables to the outcome variable Y at t = 6

Standardized

B Std. error coefficient t Sig
------------------------------------------------------------
Constant 2.380 1.027 2.317 0.022

X1 0.719 0.407 0.171 1.768 0.079

AveragX2 0.373 0.068 0.518 5.495 0.000

AveragX3 0.085 0.141 0.046 0.605 0.546

X4 -0.073 0.182 -0.040 -0.405 0.686
------------------------------------------------------------
Dependent variable: OUTCOME VARIABLE Y AT T6
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The output shows for instance a highly significant relationship between
the average value of X2 (calculated over all six repeated measurements) and
the outcome variable Y at t = 6; a relationship which can be interpreted in
such away that a 1 point higher ‘long-term exposure’ to X2 is associated with
a 0.373 point higher value for Y at t = 6.
The last mentioned cross-sectional method that can be used to analyse

a longitudinal relationship is based on the individual linear regression lines
between outcome variable Y and time. The individual regression coefficients
with time (i.e. the slopes) are then used as outcome variable in a linear
regression analysis relating the development of outcome variableY to several
predictor variables. It has alreadybeenmentioned that thepredictor variables
can bemodelled inmany different ways, depending on the research question
at issue. In this example the relationship between the values of all predictor
variables at t = 1 and the slopes of the individual regression lines of outcome
variable Y was investigated, in order to obtain an answer to the question of
whether or not the development in outcome variable Y can be predicted by
predictor variables measured at baseline. The result of this analysis is shown
in Output 4.3.

Output 4.3. Results of a linear regression analysis relating baseline values
of the predictor variables to the slopes of the individual regression lines
between outcome variable Y and time

Standardized

B Std. error coefficient t Sig
------------------------------------------------------------
Constant -0.159 0.158 -1.002 0.318

X1 0.051 0.063 0.084 0.824 0.411

X2 0.026 0.010 0.247 2.684 0.008

X3 -0.021 0.067 -0.026 -0.328 0.743

X4 0.063 0.026 0.235 2.418 0.017
------------------------------------------------------------
Dependent variable: SLOPEY

In this analysis, both X2 (measuredatbaseline) and X4 are significantly and
positively related to the linear increase in the outcome variable Y between
t = 1 and t = 6. Subjects with X4 = 2 (i.e. females) have a 0.063 higher
slope than the subjects with X4 = 1 (i.e. males). The way the ‘slope’ has to
be interpreted depends on the way time is modelled. Because in the example
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dataset the outcome variable Y is measured at yearly intervals, the slope of
the linear regression with time can be interpreted as the yearly increase in
outcome variable Y .
So far, three relatively simple analyses have been performed to invest-

igate the ‘longitudinal’ relationship between the outcome variable Y and
the four predictor variables X . It should be stressed that although all three
analyses were based on the same dataset, and were performed to determine
the longitudinal relationship between outcome variable Y and the four pre-
dictor variables X , the different analyses produce different results. It should
be realized that longitudinal relationships can be very complicated, and
that different types of analysis should be performed to investigate different
aspects of longitudinal relationships.

4.4 Longitudinal methods

With the development of (new) statistical techniques, such as GEE and
random coefficient analysis, it has become possible to analyse longitudinal
relationships using all available longitudinal data, without summarizing the
longitudinal development of each subject into one value. The longitudinal
relationship between a continuous outcome variable Y and one or more
predictor variable(s) X (Figure 4.3) can be described by Equation (4.1).

Yit = β0 +
J∑

j=1

β1j Xitj + εit (4.1)

where Yit are observations for subject i at time t, β0 is the intercept, Xijt is the
independent variable j for subject i at time t, β1j is the regression coefficient
for independent variable j , J is the number of independent variables, and
εit is the ‘error’ for subject i at time t.
Thismodel is almost the same as a cross-sectional linear regressionmodel,

except for the subscripts t. These subscripts indicate that the outcome vari-
able Y is repeatedly measured on the same subject (i.e. the definition of
a longitudinal study), and that the predictor variable X can be repeatedly
measured on the same subject. In this model the coefficients of interest are
β1j, because these regression coefficients show themagnitude of the relation-
ship between the longitudinal development of the outcome variable (Yit) and
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time

arbitrary value

Figure 4.3. Longitudinal relationship between outcome variable Y and predictor variable X
(� -------- outcome variable, • – – – predictor variable).

the development of the predictor variables (Xijt). The first extension to this
model is the addition of a time indicator t (Equation (4.2)).

Yit = β0 +
J∑

j=1

β1j Xitj + β2t + εit (4.2)

where Yit are observations for subject i at time t, β0 is the intercept, Xijt is the
independent variable j for subject i at time t, β1j is the regression coefficient
for independent variable j , J is the number of independent variables, t is
time, β2 is the regression coefficient for time, and εit is the ‘error’ for subject
i at time t.
This simplemodel canbe extended to a general form, inwhich a correction

for both time-dependent covariates (Zikt) and time-independent covariates
(Gim) is modelled (Equation (4.3)).

Yit = β0 +
J∑

j=1

β1j Xitj + β2t +
K∑

k=1

β3k Zikt +
M∑

m=1

β4mGim + εit (4.3)

where Yit are observations for subject i at time t, β0 is the intercept, Xijt is
the independent variable j for subject i at time t, β1j is the regression coeffi-
cient for independent variable j , J is the number of independent variables,
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t is time, β2 is the regression coefficient for time, Zikt is the time-dependent
covariate k for subject i at time t, β3k is the regression coefficient for time-
dependent covariate k, K is the number of time-dependent covariates, Gim

is the time-independent covariate m for subject i , β4m is the regression
coefficient for time-independent covariate m, M is the number of time-
independent covariates, and εit is the ‘error’ for subject i at time t.
In this general model, again the coefficients of interest are β1j, because

these regression coefficients express the relationships between the longit-
udinal development of the outcome variable (Yit) and the development of
different predictor variables (Xijt). Predictor variables and covariates can
be either continuous, dichotomous or categorical. For the latter, the same
procedure as in cross-sectional linear regression analyses has to be followed,
i.e. dummy variables must be created for each of the categories. In the fol-
lowing sections two sophisticated methods (GEE and random coefficient
analysis) will be discussed. Both techniques are highly suitable for estimation
of the regression coefficients of the general model given in Equation (4.3).

4.5 Generalized estimating equations

4.5.1 Introduction
With GEE the relationships between the variables of the model at different
time-points are analysed simultaneously. So, the estimated β1 reflects the
relationship between the longitudinal development of the outcome variable
Y and the longitudinal development of corresponding predictor variables X ,
using all available longitudinal data (Figure 4.3). GEE is an iterative proced-
ure, using quasi-likelihood to estimate the regression coefficients (Liang and
Zeger, 1986; Zeger and Liang, 1986; Zeger et al., 1988; Zeger and Liang, 1992;
Liang and Zeger, 1993; Lipsitz et al., 1994a). The details of quasi-likelihood
will not be discussed. An extensive explanation of quasi-likelihood can be
found in several other publications (McCullagh, 1983; Nelder and Pregibon,
1987; Zeger and Qaqish, 1988; Nelder and Lee, 1992; Diggle et al.,
1994).

4.5.2 Working correlation structures
Because the repeated observations within one subject are not independent
of each other, a correction must be made for these within-subject correla-
tions. With GEE, this correction is carried out by assuming a priori a certain
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‘working’ correlation structure for the repeated measurements of the out-
come variable Y . Depending on the software package used to estimate the
regression coefficients, there is a choice between various correlation struc-
tures. The first possibility is an independent structure. With this structure
the correlations between subsequent measurements are assumed to be zero.
In fact, this option is counterintuitive because a special technique is being
used to correct for the dependency of the observations and this correlation
structure assumes independence of the observations:

t1 t2 t3 t4 t5 t6
t1 — 0 0 0 0 0

t2 0 — 0 0 0 0

t3 0 0 — 0 0 0

t4 0 0 0 — 0 0

t5 0 0 0 0 — 0

t6 0 0 0 0 0 —

A second possible choice for a working correlation structure is an exchange-
able structure. In this structure the correlations between subsequent mea-
surements are assumed to be the same, irrespective of the length of the time
interval:

t1 t2 t3 t4 t5 t6
t1 — ρ ρ ρ ρ ρ

t2 ρ — ρ ρ ρ ρ

t3 ρ ρ — ρ ρ ρ

t4 ρ ρ ρ — ρ ρ

t5 ρ ρ ρ ρ — ρ

t6 ρ ρ ρ ρ ρ —

A third possible working correlation structure, the so-called (stationary)
m-dependent structure assumes that the correlations t measurements apart
are equal, the correlations t + 1measurements apart are assumed tobe equal,
and so on for t = 1 to t = m. Correlations more than m measurements
apart are assumed to be zero.When, for instance, a ‘2-dependent correlation
structure’ is assumed, all correlations onemeasurement apart are assumed to
be the same, all correlations two measurements apart are assumed to be the
same, and the correlations more than two measurements apart are assumed
to be zero:
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t1 t2 t3 t4 t5 t6
t1 — ρ1 ρ2 0 0 0

t2 ρ1 — ρ1 ρ2 0 0

t3 ρ2 ρ1 — ρ1 ρ2 0

t4 0 ρ2 ρ1 — ρ1 ρ2

t5 0 0 ρ2 ρ1 — ρ1

t6 0 0 0 ρ2 ρ1 —

A fourth possibility is an autoregressive correlation structure, i.e. the cor-
relations onemeasurement apart are assumed tobeρ; correlations twomeas-
urements apart are assumed to be ρ2; correlations t measurements apart are
assumed to be ρt .

t1 t2 t3 t4 t5 t6
t1 — ρ1 ρ2 ρ3 ρ4 ρ5

t2 ρ1 — ρ1 ρ2 ρ3 ρ4

t3 ρ2 ρ1 — ρ1 ρ2 ρ3

t4 ρ3 ρ2 ρ1 — ρ1 ρ2

t5 ρ4 ρ3 ρ2 ρ1 — ρ1

t6 ρ5 ρ4 ρ3 ρ2 ρ1 —

The least restrictive correlation structure, is the unstructured correlation
structure. With this structure, all correlations are assumed to be different:

t1 t2 t3 t4 t5 t6
t1 — ρ1 ρ2 ρ3 ρ4 ρ5

t2 ρ1 — ρ6 ρ7 ρ8 ρ9

t3 ρ2 ρ6 — ρ10 ρ11 ρ12

t4 ρ3 ρ7 ρ10 — ρ13 ρ14

t5 ρ4 ρ8 ρ11 ρ13 — ρ15

t6 ρ5 ρ9 ρ12 ρ14 ρ15 —

In the literature it is assumed that GEE analysis is robust against a
wrong choice of correlation matrix (i.e. it does not matter much which
correlation structure is chosen, the results of the longitudinal analysis
will be more or less the same) (Liang and Zeger, 1986; Zeger and Liang,
1986). However, when the results of analyses with different working
correlation structures are compared to each other, they differ in such a
way that they can lead to ‘wrong’ conclusions about longitudinal relation-
ships between several variables (Twisk et al., 1997). It is therefore impor-
tant to realize which correlation structure is most appropriate for the
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analysis. Unfortunately, with GEE there is no straightforward way to de-
termine which correlation structure should be used. One of the possibilities
is to analyse the within-subject correlation structure of the observed data to
find out which possible structure is the best approximation of the ‘real’ cor-
relation structure1. Furthermore, the simplicity of the correlation structure
has to be taken into account when choosing a certain working correlation
structure. The number of parameters (in this case correlation coefficients)
that need to be estimated differs for each of the various working correlation
structures. For instance, for an exchangeable structure only one correlation
coefficient has to be estimated, while for a stationary 5-dependent structure,
five correlation coefficients must be estimated. Assuming an unstructured
correlation structure in a longitudinal studywith six repeatedmeasurements,
15 correlation coefficients must be estimated. As a result, the power of the
statistical analysis is influenced by the choice of a certain structure. Basically,
the best choice is the simplest correlation structure which fits the data well.
In order to enhance insight in GEE analysis, the estimation procedure can

be seen as follows. First a ‘naive’ linear regression analysis is carried out, as-
suming the observationswithin subjects are independent. Then, basedon the
residuals of this analysis, theparameters of theworking correlationmatrix are
calculated. The last step is to re-estimate the regression coefficients, correct-
ing for the dependency of the observations. Although the whole procedure
is slightly more complicated (i.e. the estimation process alternates between
steps two and three, until the estimates of the regression coefficients and
standard errors stabilize), it basically consists of the three above-mentioned
steps (see Burton et al., 1998).
In GEE analysis, the within-subject correlation structure is treated as a

‘nuisance’ variable (i.e. as a covariate). So, in principle, the way in which
GEE analysis corrects for the dependency of observations within one subject
is the way that has been shown in Equation (4.4) (which can be seen as an
extension of Equation (4.3)).

Yit = β0 +
J∑

j=1

β1j Xitj + β2t + · · · + CORRit + εit (4.4)

1 One must realize that, in fact, GEE corrects for correlated errors (εit in Equations (4.1) to (4.3)). The
correlated errors are caused by the correlated observations, but they are not exactly the same. Adding
predictor variables to the longitudinal model, for instance, can lead to another correlation structure in
the errors than the one approximated by the within-subject correlation structure of the observed data.
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where Yit are observations for subject i at time t, β0 is the intercept, Xijt is
the independent variable j for subject i at time t, β1j is the regression coeffi-
cient for independent variable j , J is the number of independent variables,
t is time, β2 is the regression coefficient for time, CORRit is the working
correlation structure, and εit is the ‘error’ for subject i at time t.

4.5.3 Interpretation of the regression coefficients derived from GEE analysis
Basically, the regression coefficient β1 for a particular predictor variable
relates the ‘vector’ of outcomes over time to the ‘vector’ of the predictor
variable over time:
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Unfortunately, there is no simple straightforward interpretation of the re-
gression coefficient β1. In fact, GEE analysis based on the model presented
here includes a ‘pooled’ analysis of longitudinal and cross-sectional rela-
tionships; or in other words, it combines a within-subject relationship with
a between-subjects relationship, resulting in one single regression coeffi-
cient. This has the following implications for interpretation of the regression
coefficients. Suppose that for a particular subject the value of an outcome
variable Y is relatively high at each of the repeated measurements, and that
this value does not change much over time. Suppose further that for that
particular subject the value of a particular predictor variable X is also relat-
ively high at each of the repeated measurements, and also does not change
muchover time.This indicates a longitudinal ‘between-subjects’ relationship
between outcome variable Y and predictor variable X . Suppose that for an-
other subject the value of the outcome variable Y increases rapidly along the
longitudinal period, and suppose that for the same subject this pattern is also
found for predictor variable X . This indicates a ‘within-subject’ relationship
between outcome variable Y and predictor variable X . Both relationships
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Figure 4.4. Illustration of the relationship between two continuous variables. The
between-subjects relationship (a) and the within-subject relationship (b)
(� -------- outcome variable, • – – – predictor variable).

are part of the overall longitudinal relationship between outcome variable Y
and predictor variable X , so both should be taken into account in the analysis
of the longitudinal relationship. The regression coefficient β1estimated with
GEE analysis ‘combines’ the two possible relationships into one regression
coefficient. Both phenomena are illustrated in Figure 4.4.
In Chapter 5, alternative models will be discussed with which it is possible

to obtain an estimation of only the ‘within-subject’ relationships.
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Table 4.1. Within-subject correlation structure for outcome variable Y

Yt1 Yt2 Yt3 Yt4 Yt5 Yt6

Yt1 — 0.76 0.70 0.67 0.64 0.59

Yt2 — 0.77 0.78 0.67 0.59

Yt3 — 0.85 0.71 0.63

Yt4 — 0.74 0.65

Yt5 — 0.69

Yt6 —

4.5.4 Example
4.5.4.1 Introduction

Before carrying out a GEE analysis, the within-subject correlation structure
must be chosen. As mentioned before, a possible choice for this working
correlation structure can be based on the correlation structure of the ob-
served data. Table 4.1 shows the observed correlation structure for outcome
variable Y .
The first correlation structure that should be considered is an independent

structure, i.e. all correlations are assumed to be zero. From Table 4.1 it can
be seen that the lowest correlation coefficient is 0.59, i.e. far from zero, so an
independent correlation structure does not appear to fit the observed data.
The second possibility is an exchangeable structure, i.e. all correlations are
assumed to be the same. The correlation coefficients range from 0.59 to 0.85.
They are not equal, but they are generally of the same magnitude. Another
possible correlation structure to consider is anm-dependent structure.With
six repeated measurements, the highest order for anm-dependent structure
is a 5-dependent structure (five time intervals). A lower-order-dependent
structure does not appear to fit, because it implies that there are correlations
close to zero, which is not the case in this particular situation. A 5-dependent
correlation structure indicates that all correlations one measurement apart
are equal, all correlations two measurements apart are equal, etc. Looking
at the observed correlation structure, the correlations one measurement
apart range from0.69 to 0.85, the correlations twomeasurements apart range
between 0.65 and 0.78, the correlations three measurements apart range be-
tween 0.63 and 0.67, and the correlations four measurements apart range
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between 0.59 and 0.64. In other words, a 5-dependent correlation struc-
ture fits the observed data quite well. From Table 4.1 it can be seen that an
autoregressive correlation structure is less appropriate than a 5-dependent
correlation structure.An autoregressive correlation structure assumes a steep
decrease in correlation coefficients when the time interval betweenmeasure-
ments increases. From Table 4.1 it can be seen that there is only a marginal
decrease in the magnitude of the correlation coefficients with an increasing
time interval. In every situation theunstructuredcorrelation structurefits the
data best, but it is questionable whether in this particular situation the loss of
efficiency due to the estimation of 15 correlation coefficients is worthwhile –
probably not.
So, neither an exchangeable structure nor a 5-dependent structure are

perfect, but both seem to fit the observed data well. In such a situation, the
working correlation structure for which the least number of parameters need
to be estimated is the best choice. Therefore, in this particular situation an
exchangeable structure is chosen.

Output 4.4. Results of a GEE analysis performed
on the example dataset

Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
----------------------------------------

0 Constant 3.617 0.680 0.000

2 TIME 0.108 0.014 0.000

4 X1 -0.024 0.274 0.931

5 X2 0.111 0.023 0.000

6 X3 -0.111 0.061 0.069

7 X4 0.101 0.131 0.440
----------------------------------------
n:147 s:0.747 #iter:12

Estimate of common correlation 0.562

4.5.4.2 Results of a GEE analysis
Output 4.4 shows the results of a GEE analysis that was applied to investigate
the relationship between the outcome variable Y and the four predictor vari-
ables X1 to X4 and time. Time is added to themodel as a continuous variable
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coded as [1, 2, 3, 4, 5, 6], assuming a linear relationship with time. This is
(in principle) comparable to the within-subject time effect in MANOVA for
repeatedmeasurements, although the latter did not assume a linear relation-
ship with time (see also Section 4.8).
Theoutput is short, simple and straightforward.Thefirst lineof theoutput

indicates that a linear GEE analysis was performed. The analysis is called
‘linear’, because a continuous outcome variable is analysed. In the second
line, the outcome variable is mentioned (YCONT), together with the chosen
correlation structure (exchangeable).Thenextpartof theoutput contains the
table with the regression coefficients, in which all the important information
can be found. First of all, the column and name of the predictor variable
are given. The column number refers to the column in which each specific
variable was found in the dataset: the TIME variable was found in column 2
and the four predictor variables were found in columns 4 to 7. Although
this is not important for the analysis, it shows directly that the data were
organized in a ‘long data structure’ (see Section 1.6).
For each of the predictor variables the regression coefficient, the standard

error of the coefficient and the corresponding p-value are given. The p-value
is based on the Wald statistic, which is defined as the square of the ratio
between the regression coefficient and its standard error. This statistic fol-
lows a χ2 distribution with one degree of freedom, which is equal to the
standard normal distribution squared. For example, for X2 theWald statistic
is calculated as (0.111/0.023)2 = (4.83)2. According to the χ2 distribution,
the corresponding p-value is lower than 0.001. The interpretation of the
magnitude of the regression coefficient is twofold: (1) the between-subjects
interpretation indicates that a difference between two subjects of 1 unit in
the predictor variable X2 is associated with a difference of 0.111 units in
the outcome variable Y ; (2) the within-subject interpretation indicates that
a change within one subject of 1 unit in the predictor variable X2 is asso-
ciated with a change of 0.111 units in the outcome variable Y . Again, the
‘real’ interpretation of the regression coefficient is a combination of both
relationships. However, from the analysis that has been performed it is not
possible to determine the contribution of each part.
FromOutput 4.4 it can be seen that X2 is the only predictor variable which

is significantly related to thedevelopmentofoutcomevariableY , and that this
association is positive. For X3 a negative association is found (β = −0.111),
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with a p-value close to the significance level of 5% (p = 0.069). The re-
sults also show that there is a significant linear increase over time of out-
comevariableY (β = 0.108, p < 0.001),whichwas also concluded from the
MANOVA for repeated measurements. So, again, in principle GEE analysis
can provide the same information as MANOVA for repeated measurements
with a ‘one-within’ design. Adding an interaction between X4 and time to
the GEE regression analysis will give similar information to MANOVA for
repeated measurements with a ‘one-within, one-between’ design. It should
be noted that in the simple GEE analysis a linear development over time is
assumed. It is also possible to assume a quadratic development (or any other
function) over time. To do so, a time squared (or any other function) term
has to be added to themodel analysed with GEE analysis. Another possibility
is to treat the time variable as a categorical variable. The latter option will be
discussed in Section 4.8.
In the last two lines of the output some additional information about the

GEEmodel is given. The number of subjects (n = 147), the ‘standard devia-
tion of the model’ (s = 0.747), which is also known as the scale parameter2,
and the number of iterations needed to obtain the estimates of the regression
coefficients (#iter 12). With the ‘variance of the model’ an indication can be
acquired for the ‘explained variance’ of the model. To obtain this indication,
Equation (4.5) must be applied.

Fit = 1 −
(
S2model

S2Y

)
(4.5)

where S2model is the variance of the model (given as s in the GEE output),
and S2Y is the variance of the outcome variable Y , calculated over all available
data.
The standard deviation of the outcome variable Y can be found in the

descriptive information of the data, which is shown in Output 4.5. From
Output 4.5 it can be seen that the standard deviation of outcome variable
Y is 0.813. Applying Equation (4.5) to the data from the GEE analysis leads
to an explained variance of 1 − (0.747)2/(0.813)2 = 15.6%. It should be
stressed that this is only a vague indication of the explained variance of the
model.

2 The scale parameter is also known as the dispersion parameter, and is related to the way in which the
variance of the outcome variable is related to the expected values of the outcome variable Y .
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Output 4.5. Descriptive information of data used in the GEE analysis

DESC ($T)

Col Name Size Mean StDev Min Max
-------------------------------------------------------------

1 ID 882 228.769 154.862 1.00 471.00

2 TIME 882 3.500 1.709 1.00 6.00

3 YCONT 882 4.500 0.813 2.40 7.50

4 X1 882 1.976 0.219 1.46 2.53

5 X2 882 3.743 1.530 1.57 12.21

6 X3 882 0.175 0.380 0.00 1.00

7 X4 882 1.531 0.499 1.00 2.00

The last line of the output of the GEE analysis gives an estimation of the
common correlation, which is 0.562. This common correlation is an estimate
of the correlation coefficient, which is used in the (exchangeable) working
correlation structure. Although this value is used in the estimation of the
regression coefficients, it is not important per se. From the output, the table
of regression coefficients gives the really relevant information. In general,
the regression coefficients, the standard errors (or a 95% confidence interval
based on these standard errors (β ± 1.96 times the standard error)) and the
p-values are presented in the results of a GEE analysis.

4.5.4.3 Different correlation structures
Based on the observed correlation structure presented in Table 4.1, an ex-
changeable correlation structurewas found tobe themost appropriate choice
in this particular situation. In Section 4.5 it was already mentioned that in
the literature it is assumed that the GEE method is robust against a wrong
choice of correlation structure. To verify this, the example dataset was re-
analysed using different correlation structures. Output 4.6 shows the results
of the GEE analysis with different correlation structures. The second lines of
the outputs indicate the working correlation structures, and the estimated
correlation coefficients are given in the last part of the outputs. For an in-
dependent correlation structure no correlation coefficients were estimated,
while for a 5-dependent correlation structure five correlation coefficients
were estimated. For the unstructured correlation structure, 15 different cor-
relation coefficients were used in the analysis.



Output 4.6. Results of the GEE analysis with different correlation structures

Linear Generalized Estimating Equations

Response: YCONT Corr: Independence

Column Name Coeff StErr p-value
---------------------------------------

0 Constant 3.247 0.672 0.000

2 TIME 0.089 0.014 0.000

4 X1 0.113 0.270 0.675

5 X2 0.173 0.026 0.000

6 X3 -0.016 0.093 0.860

7 X4 0.046 0.131 0.728
---------------------------------------
n:147 s:0.742 #iter:12

Linear Generalized Estimating Equations

Response: YCONT Corr: 5-Dependence

Column Name Coeff StErr p-value
---------------------------------------

0 Constant 3.667 0.689 0.000

2 TIME 0.127 0.014 0.000

4 X1 -0.074 0.277 0.790

5 X2 0.087 0.023 0.000

6 X3 -0.104 0.061 0.091

7 X4 0.132 0.132 0.315
---------------------------------------
n:147 s:0.752 #iter:16

Estimate of common correlations 0.667, 0.524, 0.485, 0.582, 0.79

Linear Generalized Estimating Equations

Response: YCONT Corr: Unspecified

Column Name Coeff StErr p-value
---------------------------------------

0 Constant 3.780 0.714 0.000

2 TIME 0.089 0.013 0.000

4 X1 -0.009 0.289 0.976

5 X2 0.106 0.023 0.000

6 X3 -0.094 0.057 0.096

7 X4 0.092 0.136 0.496
---------------------------------------
n:147 s:0.755 #iter:13

Estimate of common correlation

1.000 0.758 0.692 0.652 0.600 0.552

0.758 1.000 0.759 0.761 0.628 0.566

0.692 0.759 1.000 0.821 0.673 0.620

0.652 0.761 0.821 1.000 0.692 0.617

0.600 0.628 0.673 0.692 1.000 0.648

0.552 0.566 0.620 0.617 0.648 1.000

73
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Table 4.2. Regression coefficients and standard errors estimated
by GEE analysis with different correlation structures

Correlation structure

Independent 5-Dependent Exchangeable Unstructured

X1 0.11 (0.27) −0.07 (0.27) −0.02 (0.27) −0.01 (0.29)

X2 0.17 (0.03) 0.09 (0.02) 0.11 (0.02) 0.11 (0.02)

X3 −0.02 (0.09) −0.11 (0.06) −0.11 (0.06) −0.09 (0.06)

X4 0.05 (0.13) 0.13 (0.13) 0.10 (0.13) 0.09 (0.14)

Time 0.09 (0.01) 0.13 (0.01) 0.11 (0.01) 0.09 (0.01)

Table 4.2 summarizes the results of the analysis with different working
correlation structures. From Table 4.2 it can be seen that, although the con-
clusions based on p-values are the same, there are some differences in the
magnitude of the regression coefficients. This is important, because it is far
more interesting to estimate themagnitude of the association bymeans of the
regression coefficients and the 95% confidence intervals than just estimating
p-values. Based on the results of Table 4.2, it is obvious that it is important to
choose a suitable correlation structure before a GEE analysis is performed.
To put the importance of correcting for the dependency of observations

in a broader perspective the results of the GEE analysis can be compared to
a ‘naive’ longitudinal analysis, ignoring the fact that repeated observations
are carried out on the same subjects (i.e. a linear regression analysis carried
out on a total longitudinal dataset). Output 4.7 shows the results of such a
‘naive’ linear regression analysis carried out on the example dataset.
A comparison between Output 4.6 (Table 4.2) and Output 4.7 indicates

that the regression coefficients obtained from the ‘naive’ longitudinal ana-
lysis are exactly the same as the regression coefficients obtained from a GEE
analysis with an independent correlation structure. The standard errors of
the regression coefficients are however totally different. In general, ignoring
the dependency of the observations leads to an under-estimation of the
standard errors of the time-independent predictor variables and an over-
estimation of the standard errors of the time-dependent predictor vari-
ables. For the time-independent predictor variables in the naive analysis, it is
assumed that each measurement within a particular subject provides 100%
new information, while part of the information was already available in
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Output 4.7. Results of a ‘naive’ linear regression analysis performed on the
example dataset

Linear Regression Analysis

Response: YCONT

Column Name Coeff StErr p-value SS
-------------------------------------------------------------

0 Constant 3.247 0.357 0.000 17858.699

2 TIME 0.089 0.016 0.000 41.034

4 X1 0.113 0.145 0.433 8.968

5 X2 0.173 0.020 0.000 49.288

6 X3 -0.016 0.069 0.814 0.051

7 X4 0.046 0.064 0.479 0.277
-------------------------------------------------------------
df:876 RSq:0.171 s:0.742 RSS:482.461

earlier measurements of that subject, reflected in the within-subject cor-
relation coefficient. Depending on the magnitude of that coefficient, each
repeated measurement within one subject provides less than 100% new
information. This leads to larger standard errors in the corrected analysis.
For the time-dependent predictor variables, however, GEE analysis makes
use of the fact that the same subjects are measured over time. This leads to
lower standard errors of the regression coefficients.

4.5.4.4 Unequally spaced time intervals
Because time is one of the predictor variables in the model used to analyse
the relationships between outcome variable Y and several predictor variables
(Equation (4.3)), it is simple to add unequally spaced time intervals to the
model. Suppose that in the example dataset, the first four measurements
were carried out at yearly intervals, and the fifth and sixth measurements at
5-year intervals. So, time must be coded as [1, 2, 3, 4, 9, 14] instead of [1, 2,
3, 4, 5, 6]. When such a dataset is considered, the results of the GEE analysis
change considerably (see Output 4.8).
It is expected that the relationship between the outcome variable Y and

time changes when the time intervals are unequally spaced. It is import-
ant to realize that the relationship with the other four predictor variables
also changes (see Figure 4.5). For predictor variable X3 (a dichotomous
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Figure 4.5. Regression coefficients estimated by GEE analysis with a dataset with equally
spaced time intervals (�) and a dataset with unequally spaced time intervals (�).

Output 4.8. Results of the GEE analysis with a dataset
with unequally spaced time intervals

Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
------------------------------------------

0 Constant 3.900 0.693 0.000

2 TIME 0.060 0.005 0.000

4 X1 -0.098 0.279 0.727

5 X2 0.077 0.020 0.000

6 X3 -0.161 0.054 0.003

7 X4 0.131 0.132 0.322
------------------------------------------
n:147 s:0.731 #iter:12

Estimate of common correlation 0.621

time-dependent predictor variable), for instance, when the repeated meas-
urements were equally spaced a non-significant result was found, while
when the repeated measurements were unequally spaced a highly significant
relationship was observed. These differences emphasize the importance of
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adding an actual time indicator to the statistical model, especially when the
time intervals are unequally spaced (see also Section 4.8).

4.6 Random coefficient analysis

4.6.1 Introduction
Random coefficient analysis is also known as multilevel analysis or mixed-
effect analysis (Laird and Ware, 1982; Longford, 1993; Goldstein, 1995).
Multilevel analysis was initially developed in the social sciences, more specif-
ically for educational research. Investigating the performance of pupils in
schools, researchers realized that the performances of pupils within the same
class are not independent, i.e. their performances are more or less correl-
ated. Similarly, the performances of classes within the same school can be
dependent on each other. This type of study design is characterized by a hier-
archical structure. Students are nested within classes, and classes are nested
within schools.Various levels canbedistinguished.Because theperformances
of pupils within one class are not independent of each other, a correction
should bemade for this dependency in the analysis of the performance of the
pupils. Multilevel analysis is developed to correct for this dependency, for
instance by allowing for different regression coefficients for different classes.
As this technique is suitable for correlated observations, it is obvious that
it is also suitable for use in longitudinal studies. In longitudinal studies the
observations within one subject over time are correlated. The observations
over time are nestedwithin the subject. The basic idea behind the use ofmul-
tilevel techniques in longitudinal studies is that the regression coefficients are
allowed to differ between subjects. Therefore the term random coefficient
analysis is preferred to the term multilevel analysis.

4.6.2 Random coefficient analysis in longitudinal studies
The simplest form of random coefficient analysis is an analysis with only a
random intercept. The corresponding statisticalmodel withwhich to analyse
a longitudinal relationship between an outcome variable Y and time is given
in Equation (4.6).

Yit = β0i + β1t + εit (4.6)
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Figure 4.6. Development over time of a particular outcome variable Y; different intercepts for
different subjects (� -------- population, • – – – individuals 1 to n).

where Yit are observations for subject i at time t, β0i is the random intercept,
t is time, β1 is the regression coefficient for time, and εit is the ‘error’ for
subject i at time t.What isnewabout thismodel (compared toEquation(4.2))
is the random intercept β0i , i.e. the intercept can vary between subjects.
Figure 4.6 illustrates this phenomenon.
It is alsopossible that the intercept isnot random,but that thedevelopment

of a certain variable over time is allowed to vary among subjects or, in other
words, the ‘slope’ with time is considered to be random. This phenomenon
is illustrated in Figure 4.7 and in Equation (4.7).

Yit = β0 + β1it + εit (4.7)

where Yit are observations for subject i at time t, β0 is the intercept, t is time,
β1i is the random regression coefficient for time, and εit is the ‘error’ for
subject i at time t.
The most interesting possibility is the combination of a random inter-

cept and a random slope with time, which is illustrated in Figure 4.8 and
Equation (4.8).

Yit = β0i + β1it + εit (4.8)
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is the remaining ‘error’ variance (i.e. /sigma e). The STATA output does not
give the variances, but the standard deviations (indicated by /sigma). The
variances can easily be obtained by calculating the square of the standard
deviations. The last coefficient shown is rho, which is an estimation of the
intraclass correlation coefficient (ICC). The ICC is calculated as the variance
of the intercepts (i.e. (sigma u)2) divided by the total variance (which is the
sum of (sigma u)2 and (sigma e)2). The ICC can be used as an indication of
the within-subject dependency.
The last line of the output gives the results of another likelihood ratio test.

This likelihood ratio test is related to the random part of the model, and
for this test, the −2 log likelihood of the presented model is compared to
the−2 log likelihood which would have been found if the same analysis was
performed without a random intercept. Apparently, the difference in−2 log
likelihood between the twomodels is 463.17, which follows a χ2 distribution
with one degree of freedom; one degree of freedom, because the difference in
parameters between the two models compared is one (i.e. the random vari-
ation in intercepts sigma u). This value is highly significant (Prob > chi2 =
0.0000), which indicates that in this situation a random intercept should be
considered. In the coefficient table in which the two variance components
were given, for each standard deviation the standard error, the z-statistic, the
corresponding p-value and the 95% confidence interval were also shown. It
is very tempting to use the z-statistic of the random variation in intercepts
to evaluate the importance of considering a random intercept. However, one
must realize that the z-statistic is a normal approximation, which is not very
valid, especially in the evaluation of variance parameters. In other words, it is
advised to use the likelihood ratio test to evaluate the importance of allowing
random coefficients.
To verify the importance of a random intercept, Output 4.10 shows the

results of an analysis in which no random coefficient is considered. First of
all, it can be seen that the total error variance (i.e. dispersion 0.6148249) is
the sum of the two error variances shown in Output 4.9. Secondly, the log
likelihood of thismodel is−1035.99227, which produces a−2 log likelihood
of 2071.98. Performing the likelihood ratio test between the model with and
without a random intercept gives (as expected fromOutput (4.9)) a value of
463.17, which is highly significant.
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Output 4.10. Results of a ‘naive’ regression analysis with no random intercept

Log likelihood = -1035.99227

Residual df = 880 No. of obs = 882

Pearson X2 = 541.0459 Deviance = 541.0459

Dispersion = 0.6148249 Dispersion = 0.6148249

Gaussian (normal) distribution, identity link
----------------------------------------------------------------
ycont Coeff Std. Err. t P > |t| [95% Conf. Interval]

----------------------------------------------------------------

time 0.1262974 0.0154596 8.170 0.000 0.0959554 0.1566394

cons 4.057732 0.0602065 67.397 0.000 3.939567 4.175897

In the two models considered, the β1 coefficient describing the relation-
ship between outcome variable Y and time is considered to be fixed (i.e. not
assumed to vary between subjects). The next step in the modelling process
is to add a random slope to the model, i.e. to let β1 vary among subjects
(Equation (4.7)). The result of a random coefficient analysis with such a
model is shown in Output 4.11.

Output 4.11. Results of random coefficient analyses with a random
intercept and a random slope

log likelihood = -795.25898
-----------------------------------------------------------------
ycont Coeff Std. Err. z P > |z| [95% Conf. Interval]
-----------------------------------------------------------------
time 0.1263673 0.0111119 11.372 0.000 0.1045884 0.1481463

cons 4.060211 0.0560216 72.476 0.000 3.95041 4.170011
-----------------------------------------------------------------

Variance at level 1
-----------------------------------------------------------------
0.23010497 (0.01355609)

Variances and covariances of random effects
-----------------------------------------------------------------
***level 2 (id)

var(1): 0.262258 (0.05560083)

cov(1,2): 0.00610365 (0.00892569) cor(1,2): 0.16848744

var(2): 0.00500397 (0.00239667)
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This output looks slightly different to the output shown earlier for the situ-
ation with a random intercept. It is less extensive, but the important infor-
mation is provided. First of all, the log likelihood is given (i.e.−795.25898).
This is the likelihood value related to the total model, including both regres-
sion coefficients and variance components. This value canbeused to evaluate
the importance of the inclusion of a random slope in the model. Therefore,
the−2 log likelihoodof thismodelmustbe compared to the−2 log likelihood
of the model without a random slope. The difference between the −2 log
likelihoods is 1608.8 − 1590.5 = 18.3. This value follows a χ2-distribution
with a number of degrees of freedom equal to the difference in the number
of parameters estimated by the two models. Although only a random slope
is added to themodel, two extra parameters are estimated. Obviously, one of
the estimated parameters is the variance of the slopes, and the other (not so
obviously) is the covariance between the random intercept and the random
slope.This canbe seen fromthe last part of theoutput. First of all, the variance
at level 1 is given.This is the remainingoverall error variance (i.e. (sigma e)2).
Secondly, the variances and covariances of random effects are given. The first
variancegiven(var(1)0.262258(0.05560083)) is anestimationof the random
variation in intercepts with the corresponding standard error, while the
second variance (var(2) 0.00500397 (0.00239667)) provides the same infor-
mation for the randomvariation in slopes. The output also gives the cov(1,2)
(0.00610365 (0.00892569)) and the cor(1,2) (0.16848744). These are values
indicating the covariance and correlation between the random intercept and
random slope. The magnitude and direction of the covariance/correlation
between random intercept and random slope give information about the
interaction between random intercept and slope. When a negative corre-
lation is found, subjects with a high intercept have lower slopes. When a
positive correlation is found, subjects with a high intercept also have a high
slope (see Figure 4.10).
Because the correlation is calculated from the covariance, the model with

a random slope has two more parameters than the model with only a ran-
dom intercept. So, the value calculated earlier with the likelihood ratio test
(i.e. 18.3) follows a χ2 distribution with two degrees of freedom. This value
is highly significant, so in this situation not only a random intercept seems
to be important, but also a random slope.
The next step is to add the predictor variables to the statistical model, in

order to investigate the relationship betweenoutcomevariableY and the four
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Figure 4.10. (a) Negative correlation between slope and intercept, (b) positive correlation
between slope and intercept.

predictor variables X1 to X4. Output 4.12 shows the results of the random
coefficient analysis.
From Output 4.12 it can be seen that the four predictor variables X1 to

X4 are assumed to be fixed. There are no more random variances estimated
than in the analysis shown in Output 4.11. This is not really necessary but
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Output 4.12. Results of random coefficient analyses with a random intercept and a
random slope with time in order to investigate the relationship between outcome variable
Y and the four predictor variables X1 to X4

log likelihood = -778.89879
--------------------------------------------------------------------------

ycont Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------

time 0.1098585 0.0122515 8.967 0.000 0.085846 0.1338711

x1 -0.0244138 0.2705055 -0.090 0.928 -0.5545948 0.5057672

x2 0.1070983 0.0206451 5.188 0.000 0.0666346 0.147562

x3 -0.1206264 0.0597928 -2.017 0.044 -0.2378181 -0.0034346

x4 0.0415465 0.1202568 0.345 0.730 -0.1941526 0.2772455

cons 3.721137 0.6609747 5.630 0.000 2.425651 5.016624
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------
0.22480938 (0.01311782)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 0.26543988 (0.05671975)

cov(1,2): -0.00049603 (0.00908093) cor(1,2): -0.01395848

var(2): 0.00475738 (0.00217723)

seems to be appropriate inmost situations. Because all regression coefficients
related to the predictor variables are assumed to be fixed, the output from the
last analysis looks similar to that in Output 4.11. The difference is that now
the relationships between outcome variable Y and the four predictor vari-
ables are estimated. The coefficients can be tested for significance with the
z-statistic, which has been described earlier. For instance, for X2 the regres-
sioncoefficient (0.107)dividedby the standarderror (0.021)gives a z-statistic
of 5.188, which is highly significant. For the other variables the same pro-
cedure can be followed. The log likelihood value obtained by this analysis is
(again) the likelihood of the total model. A comparison between the −2 log
likelihood of this model and the −2 log likelihood derived from the analysis
presented in Output 4.11 gives an indication of the importance of all predic-
tor variables. In this example, the difference between the −2 log likelihoods
is 32.72, which follows a χ2 distribution with four degrees of freedom (four
predictor variables were added and no extra random regression coefficients).
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This likelihood ratio test gives p < 0.001. It should be noted that the likeli-
hood values of two different models can only be compared with each other
when one model is an extension of the other model.
The interpretation of the regression coefficients of the four predictor vari-

ables from a random coefficient analysis is exactly the same as the inter-
pretation of the regression coefficients estimated with GEE analysis, so the
interpretation is twofold: (1) the ‘between-subjects’ interpretation indicates
that a difference between two subjects of 1 unit in, for instance, the predictor
variable X2 is associated with a difference of 0.107 units in the outcome vari-
able Y ; (2) the ‘within-subject’ interpretation indicates that a change within
one subject of 1 unit in the predictor variable X2 is associated with a change
of 0.107 units in the outcome variable Y . Again, the ‘real’ interpretation is a
combination of both relationships.
The way the analysis is built up in this example, it is possible that owing

to some of the predictor variables added to the model, the variance due to
the random intercept and/or random slopes is no longer important. So, in
fact, the necessity of a random intercept and random slope(s) should be
re-investigated with the total model, i.e. the model with the four predictor
variables. Therefore, firstly the results of the analysis given in Output 4.12
can be compared with the results obtained from an analysis with the four
predictor variables but without a random slope with time. Secondly, the re-
sults can be compared with the results obtained from an analysis with the
four predictor variables but without a random intercept.

4.6.3.2 Unequally spaced time intervals
What has been seen in the results of the GEE analysis performed on a dataset
with unequally spaced time intervals is exactly the same for the results of
the random coefficient analysis (Figure 4.11). There are striking differences
between the results of the dataset with equally spaced time intervals and
the results of the dataset with unequally spaced time intervals. Not only has
the regression coefficient of time changed considerably, but the regression
coefficients of the four predictor variables have also changed.

4.6.4 Comments
In the first lines of the outputs it was indicated that a maximum likeli-
hood estimation procedure had been performed. There is some debate in
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Figure 4.11. Regression coefficients estimated by random coefficient analysis with a dataset
with equally spaced time intervals (�) and a dataset with unequally spaced time
intervals (�).

the literature about whether maximum likelihood is the best way to estimate
the regression coefficients in a randomcoefficient analysis. Some statisticians
believe that restricted maximum likelihood is a better estimation procedure.
It is also argued that maximum likelihood estimation is more suitable for
the estimation of the fixed effects (i.e. for estimation of the regression coeffi-
cients), while restrictedmaximum likelihood estimation is more suitable for
estimation of the different variance components (Harville, 1977; Laird and
Ware, 1982; Pinheiro and Bates, 2000). It should be realized that in practice
one is interested more in the regression coefficients than in the magnitude
of the variance components.
To facilitate the discussion, all the models have been restricted to simple

linearmodels, i.e. no squared terms, no complicated relationships with time,
no difficult interactions, etc. This does not mean that it is not possible to
use more complicated models. When looking at possible interaction terms,
special attention must be paid to the interactions between each of the
predictor variables with time. These interactions indicate in which part of
the longitudinal period the observed relationships are the strongest. To illus-
trate the interpretation of an interaction with time, an interaction between
X2 and time was added to the model described in Output 4.12. Output 4.13
shows the results of the analysis.
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Output 4.13. Results of a random coefficient analysis, with an interaction between X2 and
time

log likelihood = -757.23705

--------------------------------------------------------------------------

ycont Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------

x1 -0.2433723 0.2870338 -0.848 0.397 -0.8059483 0.3192036

x2 -0.1022496 0.0374449 -2.731 0.006 -0.1756403 -0.0288589

x3 -0.1185118 0.0579058 -2.047 0.041 -0.2320051 -0.0050186

x4 0.0790463 0.1224855 0.645 0.519 -0.1610209 0.3191136

time -0.0670296 0.0293231 -2.286 0.022 -0.1245018 -0.0095573

inttx2 0.0493359 0.0074909 6.586 0.000 0.0346539 0.0640179

cons 4.821793 0.7090097 6.801 0.000 3.43216 6.211427
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------
0.21329023 (.01271139)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 0.2979293 (0.06051497)

cov(1,2): -0.0005461 (0.00943201) cor(1,2): -0.0178419

var(2): 0.00314448 (0.00219192)

The most interesting part of the output is the importance of the interac-
tion between X2 and time. This can be evaluated in two ways: firstly with the
z-statistic of the interaction term, and secondly with the likelihood ratio test
between the model with the interaction and the model without the inter-
action. The z-statistic for the interaction term has a value of 6.586, and a
corresponding p-value of 0.000, i.e. highly significant. The likelihood ratio
test is based on the difference between the −2 log likelihood of the model
without an interaction (from Output 4.12 the −2 log likelihood can be cal-
culated as 1557.8) and the−2 log likelihood of themodel with an interaction
(from Output 4.13 the −2 log likelihood can be calculated as 1514.4). This
difference is43.4,which followsaχ2 distributionwithone(i.e. the interaction
term) degree of freedom, which is highly significant. In general, for evalu-
ation of the regression coefficients, the z-statistic produces similar results to
the likelihood ratio test, but the latter is assumed to be slightly better. The
significant interaction between X2 and time indicates that the relationship
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between X2 and the outcome variable Y differs along the longitudinal pe-
riod. The sign of the regression coefficient related to the interaction term
is positive. This suggests that the relationship between X2 and Y becomes
stronger as time increases. In fact, from Output 4.13, the magnitude of the
relationship between X2 and Y at each of the different time-points can be
estimated by combining the regression coefficient for X2 and the regression
coefficient for the interaction term.

4.7 Comparison between GEE analysis and random coefficient analysis

In the foregoing paragraphs the general ideas behind GEE analysis and ran-
dom coefficient analysis were discussed. Both methods are highly suitable
for the analysis of longitudinal data, because in both methods a correction
is made for the dependency of the observations within one subject: in GEE
analysis by assuming a certain working correlation structure, and in random
coefficient analysis by allowing the regression coefficients to vary between
subjects. The question then arises: Which of the two methods is better?
Which method is the most appropriate to answer the research question:
‘What is the relationshipbetween thedevelopmentofoutcomevariableY and
several predictor variables X?’Unfortunately, no clear answer canbe given. In
principle,GEEanalysiswithanexchangeable correlation structure is the same
as random coefficient analysis with only a random intercept. The correction
for the dependency of observations with an exchangeable ‘working correla-
tion’ structure is the same as allowing subjects to have random intercepts.
When an exchangeable correlation structure is not appropriate, GEE analy-
sis with a different correlation structure can be used. When an exchangeable
correlation structure is appropriate, and there is no random variation in one
of the estimated regression coefficients (except the intercept), GEE analysis
and random coefficient analysis are equally appropriate. When there is sig-
nificant and relevant random variation in one (or more) of the regression
coefficients, random coefficient analysis can be used, with the additional
possibility of allowing other coefficients to vary between subjects.
It is very important to realize that the differences and equalities between

GEE analysis and random coefficient analysis described in this section only
hold for continuous outcome variables. For dichotomous and categorical
outcome variables, the situation is different (see Chapters 6 and 7).
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4.7.1 Extensions of random coefficient analysis
To summarize, a GEE analysis with an exchangeable correlation structure
is the same as a random coefficient analysis with only a random intercept.
The assumption of random coefficient analysis is that the random inter-
cepts between individuals are normally distributed with mean zero and a
certain variance (which is estimated by the statistical software package and
given in the output). Although this assumption is quite sufficient in many
situations, sometimes the random variation is not normally distributed.
Therefore, some software packages (e.g. STATA) provide the possibility of
modelling (to some extent) the distribution of the variation in the regression
coefficients (see for instance Rabe-Hesketh et al., 2001a).
InGEE analysis there is some flexibility inmodelling the correlation struc-

ture, which is not available in ‘standard’ random coefficient analysis. There-
fore, in somesoftwarepackages (e.g. S-PLUS), the randomcoefficientanalysis
can be extended by adding a correlation structure to the model. The pos-
sible correlation structures are basically the same as has been described for
GEE analysis (see Section 4.5.2). In fact, this additional correction can be
carried out when the random coefficients are not sufficient to correct for the
dependency of observations. In more technical terms, despite the correction
made by the random coefficients, the ‘error’ is still correlatedwithin subjects,
which indicates that an additional correction is necessary.
Although this additional correction is an interesting extension of the

‘standard’ random coefficient analysis, it should be usedwith caution. This is
mostly because there is a danger of ‘over-correction’. It is for instance possible
to model both a random intercept and an additional exchangeable correla-
tion structure. Because the two options are exactly the same, this will lead
to ‘over-correction’ and corresponding problems with the estimation and
interpretation of the regression coefficients.

4.7.2 Equal variances over time
With GEE analysis only one variance parameter is estimated. This suggests
more or less that the variance in outcome variable Y remains equal over
time. This is, however, not always true. It is very likely that in a longit-
udinal study a change in variance over time in the outcome variable Y
occurs. This phenomenon is also known as ‘heteroscedasticity’. In random
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coefficient analysis the change in variance over time in the outcome vari-
able Y is (partly) taken into account by the possibility of a random slope.
It is, however, possible that a random slope is not sufficient to correct for
the changing variance over time. Or in other words, despite the correction
due to the random slope, the ‘error variance’ is still changing over time.
Therefore, in some software packages (e.g. S-PLUS) additional modelling of
the variance over time is possible. This is done by adding a certain ‘variance
function’ to the random coefficient model. For more information reference
should be made to for instance Pinheiro and Bates (2000).

4.7.2.1 A numerical example
It is interesting to illustrate the influence of a changing variance over time
on the magnitude of the regression coefficients of a simple longitudinal
data analysis. Consider the two (simple) longitudinal datasets shown in
Figure 4.12. In both datasets nine subjects were measured twice in time.
In the first longitudinal dataset, there is an increase of the variance in out-

comevariableYVAR1at the follow-upmeasurement,while in the second lon-
gitudinal dataset (YVAR2), there is a decrease in variance over time. For both
datasets the research question is related to the development over time. Both
datasets areanalysedwithGEEanalysis,with randomcoefficientanalysiswith
only a random intercept, andwith randomcoefficient analysiswith a random
intercept and a random slope. Table 4.3 shows the results of the analyses.
It is not surprising that the results of the GEE analysis and the random

coefficient analysis with only a random intercept are exactly the same. Fur-
thermore, it is also not surprising that the regression coefficients for time
are more or less the same for all three analyses. The difference between GEE
analysis and random coefficient analysis with both a random intercept and a
random slope is observed in the standard error of the regression coefficient
for time. Allowing a random slope leads to a decrease in the standard error of
the regression coefficient. In other words, it leads to amore efficient estimate
of the standard error.

4.7.3 The correction for covariance
In some software packages (e.g. SAS) the correction for the correlated ob-
servations and the (possible) changing variance over time is combined in a
correction for the ‘covariance’. The ‘covariance’ between two measurements
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Figure 4.12. Two simple longitudinal datasets used to illustrate the influence of a changing
variance over time; one dataset with an increase in variance over time (a) and one
dataset with a decrease in variance over time (b).

is a combination of the correlation between the two measurements and the
variances of the two measurements (Equation 4.10).

covar (Yt , Yt+1) = corr (Yt , Yt+1) sd (Yt) sd (Yt+1) (4.10)
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Table 4.3. Regression coefficients and standard errors (in parentheses)
for time estimated with different analyses on two (simple) longitudinal
datasets given in Figure 4.12

Random coefficient Random coefficient

analysis with random analysis with random

GEE analysis intercept intercept and slope

YVAR1 5.00 (0.63) 5.00 (0.63) 5.02 (0.43)

YVAR2 −2.50 (0.31) −2.50 (0.31) −2.50 (0.24)

where covar(Yt , Yt+1) is the covariance between Y at t and Y at t + 1,
corr(Yt , Yt+1) is the correlation between Y at t and Y at t + 1, and sd(Yt) is
the standard deviation of Y at t.
Comparable to the correction for the correlation between the observations

used in GEE, there are many different possibilities for the correction for the
‘covariance’ between observations (see Chapter 12 for details). Again, basic-
ally the correction is made for the ‘error covariance’, which is equal to the
covariance of the repeated observations in an analysis without any predictor
variables.

4.7.4 Comments
In the foregoing sections it was often mentioned that sophisticated analyses
are needed to correct for correlated observations. However, basically the cor-
rection in longitudinal data analysis is carried out for correlated ‘errors’. The
same holds for the changing variance over time.When there are no predictor
variables in the model, the correlation and changing variance over time are
equivalent to the same phenomena observed in the ‘errors’. It is possible that
by adding certain predictor variables to the model (part of) the correlation
or changing variance over time is ‘explained’. Because of this in the literat-
ure ‘correlated observations’ is sometimes followed by ‘given the predictor
variables in the statistical model’.

4.8 The modelling of time

In the foregoing sections, for both GEE and random coefficient analysis,
time was modelled as a continuous variable. A major disadvantage of this
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Table 4.4. Example dataset with time as a continuous variable and as a categorical
variable with dummy coding

Time (categorical)

ID Time (continuous) Dummy1 Dummy2 Dummy3 Dummy4 Dummy5

1 1 0 0 0 0 0

1 2 1 0 0 0 0

1 3 0 1 0 0 0

1 4 0 0 1 0 0

1 5 0 0 0 1 0

1 6 0 0 0 0 1

2 1 0 0 0 0 0

2 2 1 0 0 0 0

2 3 0 1 0 0 0

2 4 0 0 1 0 0

2 5 0 0 0 1 0

2 6 0 0 0 0 1
...

approach is that the development over time of outcome variable Y is mod-
elled as a linear function. This is certainly not always true. It has already
been mentioned that one of the possible ways to handle this is to model the
development over time as a quadratic, or cubic function, etc. With all this
modelling, however, there is still some underlying assumption of the shape
of the development over time for outcome variableY . A very elegant solution
is to model time as a categorical variable instead of a continuous one. With
time as a categorical variable, the ‘real’ development over time is modelled,
without assuming a certain shape of that relationship. Table 4.4 illustrates
part of the example dataset with time as a categorical variable.
It should be taken into account that with time as a categorical variable in a

situationwith six repeatedmeasurements, five regressionparametersmust be
estimated.Inthesamesituation,withtimeasacontinuousvariableandassum-
ing a linear relationship, only one regression coefficient must be estimated.
So,modelling time as a categorical variable is only interestingwhen the num-
ber of repeated measurements is low (compared to the number of subjects).
Another limitation of the use of time as a categorical variable is the

fact that this is only possible when the time intervals between the repeated
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Table 4.5. Example of a dataset with four repeated measurements (N = 3)
with time as a continuous variable with equal measurement points and time
as the actual date of measurement

ID Time (continuous) Date (in days)

1 1 0

1 2 20

1 3 45

1 4 100

2 1 0

2 2 30

2 3 40

2 4 80

3 1 0

3 2 25

3 3 50

3 4 70

measurements are the same for each subject. It is obvious that with unequal
time intervals between subjects, the dummy coding goes wrong.
In the examples presented in this chapter, each subject was assumed to

be measured at the same time-points. Time was simply coded as [1, 2, 3, 4,
5, 6]. However, with both GEE analysis and random coefficient analysis it
is possible to model the actual time of each measurement. For instance, the
number of days or weeks after a certain baseline measurement can be used
as a time indicator (Table 4.5). This is far more realistic, because subjects
are almost never measured at exactly the same time. For each subject this
indicates that a different time sequence of the measurements is modelled,
which directly implies that time cannot bemodelled as a categorical variable.
Sections 4.5.4.4 and 4.6.3.2 discussed the results of a longitudinal analy-

sis of the relationships between an outcome variable Y and several predic-
tor variables with unequally spaced time intervals. The results tended to be
quite different from the situation inwhich equally spaced time intervals were
considered. These differences were found between two datasets that only dif-
fered in the coding of the time variable. It should be noted that if time is used
as a categorical variable, this difference does not occur. This is due to the
fact that in the dummy coding the real time intervals are no longer included.
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Output 4.14. Results of two GEE analyses: one GEE
analysis with time as a continuous variable (A), and
one GEE analysis with time as a categorical variable (B)

(A) Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value

------------------------------------------

0 Constant 4.058 0.056 0

2 TIME 0.126 0.011 0

------------------------------------------

n:147 s:0.784 #iter:10

Estimate of common correlation 0.595

(B) Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value

------------------------------------------

0 Constant 4.435 0.055 0.000

8 TIME1 -0.112 0.038 0.004

9 TIME2 -0.169 0.044 0.000

10 TIME3 -0.261 0.046 0.000

11 TIME4 0.241 0.052 0.000

12 TIME5 0.691 0.063 0.000

------------------------------------------

n:147 s:0.749 #iter:10

Estimate of common correlation 0.674

When one is only interested in the relationship with time, this is no problem;
the only thing one should worry about then is a correct interpretation of the
different dummy variables. However, when one is interested in the relation-
ship with other variables than time, this can lead to major problems in the
interpretation of the regression coefficients.
Another problem with the use of dummy variables for the coding of time

arises when there are missing observations. In such situations, it is possible
that the dummy variable coding does not have the samemeaning as it should
have for a complete dataset.

4.8.1 Example
Output 4.14 shows the results of a GEE analysis in which the outcome vari-
able Y is related to time as a continuous outcome variable, assuming a linear
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Figure 4.13. The modelled development of outcome variable Y over time, estimated with two
different GEE analyses (� -------- time continuous, • – – – time categorical).

relationship with time. In the same output, the results of a GEE analysis
are shown in which the outcome variable Y is related to time as a categor-
ical variable, coded as dummyvariables in such away as has beenpresented in
Table 4.4.
From the first part of the output (4.14(A)) it can be seen that the regres-

sion coefficient of time is 0.126, which indicates that there is an increase
over time in outcome variable Y , and that for an increase in each time unit
(i.e. a year) the outcome variable Y increases with 0.126 units. The second
part of the output (4.14(B)) shows quite a different picture. The regres-
sion coefficients of the five dummy variables (there were six meas-
urements in the example dataset, so there are five dummy variables) can
be interpreted as follows: compared to the first measurement (which is the
reference ‘category’), there is a decrease in outcome variable Y at the sec-
ond measurement (β = −0.112). At the third measurement the decrease
continues (β = −0.169), and at the fourth measurement the lowest point
is reached. At the fifth and the sixth measurements the value of outcome
variable Y is higher than the baseline value, indicating a steep increase dur-
ing the last two measurements. Figure 4.13 illustrates the results of both
models.
It is quite clear that the modelling of time as a categorical variable is much

closer to the ‘real’ observed development over time for outcome variable Y .
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Output 4.15. Results of two GEE analyses to determine
the longitudinal relationship between outcome variable Y
and four predictor variables: one with time as a continuous
variable (A) and one with time as a categorical variable (B)

(A) Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
-------------------------------------------

0 Constant 3.617 0.680 0.000

2 TIME 0.108 0.014 0.000

4 X1 -0.024 0.274 0.931

5 X2 0.111 0.023 0.000

6 X3 -0.111 0.061 0.069

7 X4 0.101 0.131 0.440
-------------------------------------------
n:147 s:0.747 #iter:12

Estimate of common correlation 0.562

(B) Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
-------------------------------------------

0 Constant 3.988 0.688 0.000

4 X1 -0.029 0.276 0.918

5 X2 0.103 0.019 0.000

6 X3 -0.084 0.054 0.117

7 X4 0.111 0.130 0.393

8 TIME1 -0.118 0.038 0.002

9 TIME2 -0.190 0.045 0.000

10 TIME3 -0.299 0.047 0.000

11 TIME4 0.154 0.059 0.009

12 TIME5 0.620 0.070 0.000
-------------------------------------------
n:147 s:0.711 #iter:12

Estimate of common correlation 0.646

The following step is to investigate the consequences of the different ways
of modelling time for the magnitude of the regression coefficients reflecting
the longitudinal relationshipwith other variables. Therefore both time indic-
ators were used in the analysis of the longitudinal relationship between the
outcome variable Y and the four predictor variables X1 to X4. Output 4.15
shows the results of these two GEE analyses. From Output 4.15 it can be



101 The modelling of time

seen that there are some differences between the two analyses, but that these
differences are only marginal.
To summarize, when one is interested in the development over time of a

particular outcome variable, when the number of repeated measurements is
not very large, when the repeated measurements are equally spaced between
subjects, and when there are no missing observations, it is highly recom-
mended that time should be modelled as a categorical variable. In all other
situations, it is more appropriate to model time as a continuous variable.
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Other possibilities for modelling
longitudinal data

5.1 Introduction

In Chapter 4, GEE analysis and random coefficient analysis were introduced
as two (sophisticated) methods that can be used to analyse the longitudinal
relationship between an outcome variable Y and several predictor variables.
In this chapter, the models described in Chapter 4 (which are known as
standard or marginal models) are slightly altered in order to answer specific
research questions.

5.2 Alternative models

5.2.1 Time-lag model
It is assumed that the greatest advantage of a longitudinal study design in epi-
demiological research is that causal relationships can be detected. However,
in fact this is only partly true for experimental designs (see Chapter 9). In
observational longitudinal studies in general, no answer can be given to the
question of whether a certain relationship is causal or not. With the stand-
ard or marginal models already described in Chapter 4, it is only possible
to detect associations between an outcome variable Y and one (or more)
predictor variable(s) X . When there is some rationale about possible cau-
sation in observational longitudinal studies, these associations are called
‘quasi-causal relationships’. In every epidemiological textbook a list of argu-
ments can be found which can give an indication as to whether or not
an observed relationship is causal (see Table 1.1). One of these concerns
the temporal sequence of the relationship. When the predictor variable X
precedes the outcome variable Y , the observed relationship may be causal
(Figure 5.1).

102
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CAUSE EFFECT
(X ) (Y )

t = t t = t + 1

Figure 5.1. Temporalsequencebetweenpredictorvariable(cause)andoutcomevariable(effect).

time

arbitrary value

Figure 5.2. Illustration of the time-lag model; predictor variable X is modelled prior to the
outcome variable Y (� ––––––– outcome variable, • - - - predictor variable).

With a small change in the standard models described in Chapter 4, this
time sequence between predictor variables X and outcome variable Y can
be modelled. In this so-called time-lag model the predictor variables X are
modelled prior in time to the outcome variable Y (Figure 5.2). The corres-
ponding equation is:

Yit = β0 +
J∑

j=1

β1jXijt−1 + · · · (5.1)

where Yit are observations for subject i at time t, β0 is the intercept, Xijt−1

is the independent variable j for subject i at time t − 1, β1j is the regression
coefficient for independent variable j , and J is the number of independent
variables.
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In a time-lag model the predictor variables X at time-point t − 1 are
related to the outcome variable Y at time-point t. The remaining part of
the model is equivalent to the standard model described in Chapter 4 (see
Equation (4.3)).
Both the time-lag model and the standard model pool together longit-

udinal and cross-sectional relationships into one regression coefficient.
This is sometimes hard to understand, but it indicates that both the rela-
tionships between absolute values at each time-point (‘between-subjects’
relationships) and the relationships between changes between subsequent
time-points (‘within-subject’ relationships) are used to estimate the overall
regression coefficients (see Section 4.5.3). The only difference between the
time-lag model and the standard model is that the time-lag model takes into
account the temporal sequence of a possible cause and effect. The question
then arises: should a time-lag model be used in every situation in which a
causal relationship is suspected? The answer is no! In fact, a time-lag model
can only be useful when the time periods between subsequentmeasurements
are short.When the time periods are long, the biological plausibility of a time
lag between predictor variable X and outcome variable Y is not very clear.
Furthermore, sometimes a time lag is already taken into account in the way
a certain predictor variable is measured. For instance, when a lifestyle para-
meter such as dietary intake or physical inactivity is used as predictor variable
in relation to some sort of disease outcome, both lifestyle parameters are
oftenmeasured by somemethod of retrospective recall (e.g. measurement of
the average amount of dietary intake of a certain nutrient over the previous
three months). In other words, when a time lag is included in the method of
measuring the predictor variable X , a statistical time-lag model is not very
appropriate. In general, the usefulness of a time-lag model depends on the
biological plausibility of a time lag in the relationship analysed.
It is also possible that the results of a time-lag model are a reflection of the

results that would have been found in a standard model. This occurs when
the relative stability (see Chapter 11) of both the outcome variable and the
predictor variable of interest is rather high. In fact, the standard/marginal
relationships carry over to the time-lag relationship through the relative
stability of the variables involved in the relationship investigated. Figure 5.3
illustrates this phenomenon.
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predictor predictor

outcome outcome

t = t t = t  + 1

Figure 5.3. A time-lag relationship can be a reflection of the standard relationship when the
relative stability of both the outcome variable and the predictor variable is high.

5.2.2 Modelling of changes
As mentioned before, both the standard model and the time-lag model pool
together ‘between-subjects’ and ‘within-subject’ relationships. Although this
is an important strength of the analysis, it also limits the interpretation
of the results in such a way that no separation can be made between the
two aspects of longitudinal relationships. This can be a problem especially
when the variation in absolute values between subjects exceeds the changes
over time within subjects. In this particular situation, in the pooled analysis
the longitudinal within-subject relationships will be more or less overruled
by the cross-sectional between-subjects relationships (see Figure 5.4). This
problem arises in particular when the time periods between subsequent
measurements are relatively short, or when there is a strong (mostly non-
observable) influence from the background variables (see Section 5.4).
Because of this limitation of both the standard model and the time-lag

model, a model can be used in which the cross-sectional part is more or
less ‘removed’ from the analysis. One possibility is not to model absolute
values at each time-point, but to model changes between two consecutive
measurements of both the outcome variable Y and the predictor variables X
(Figure 5.5). The corresponding equation is:

(Yit − Yit−1) = β0 +
J∑

j=1

β1j (Xijt − Xijt−1) + · · · (5.2)
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time

arbitrary value

1 2 3 4 5 6

Figure 5.4. Illustration of a longitudinal study in which the changes over time within one
subject are less than the differences between subjects; the cross-sectional
relationships will ‘overrule’ the longitudinal relationships.

time

arbitrary value

Figure 5.5. Illustration of the modelling of changes; changes in predictor variable X are related
to changes in the outcome variable Y (� ––––––– outcome variable, • - - - predictor
variable).
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where Yit are observations for subject i at time t, Yit−1 is the observation for
subject i at time t − 1, β0 is the intercept, Xijt is the independent variable
j for subject i at time t, Xijt−1 is the independent variable j for subject i at
time t − 1, β1j is the regression coefficient for independent variable j , and J
is the number of independent variables.
The remaining part of themodel can be the same as in the standardmodel,

but the changes for the time-dependent covariates can also bemodelled. The
modelling of changes looks quite simple, but it can be very complicated,
owing to the difficulty of defining changes between subsequent measure-
ments (see Chapter 8).

5.2.3 Autoregressive model
Anotherway inwhich to ‘remove’ the cross-sectional part of the relationships
is to use an autoregressive model. Autoregressive models are also known as
Markov models, conditional models or transition models, and an extensive
amount of literature has been devoted to these types of models (Rosner
et al., 1985; Rosner and Munoz, 1988; Zeger and Qaqish, 1988; Stanek et al.,
1989; Lindsey, 1993). The corresponding equation is:

Yit = β0 +
J∑

j=1

β1j Xijt−1 + β2Yit−1 + · · · (5.3)

where Yit are observations for subject i at time t, β0 is the intercept, Xijt−1

is the independent variable j for subject i at time t − 1, β1j is the regres-
sion coefficient for independent variable j , J is the number of independent
variables, Yit−1 is the observation for subject i at time t − 1, and β2 is the
autoregression coefficient.
In an autoregressive model the value of the outcome variable Y at time-

point t is relatednotonly to thevalueof thepredictor variable X at time-point
t − 1, but also to the value of the outcome variable Y at t − 1. The remaining
part of the model is usually the same as in the standard model. The model
shown inEquation (5.3) is called a ‘first-order’ autoregressivemodel, because
the outcome variable Y at time-point t is only related to the value of the out-
come variable Y at t − 1. In a ‘second-order’ or ‘third-order’ autoregressive
model, theoutcomevariableY at time-point t is also related to thevalueof the
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Figure 5.6. Overview of different models used to analyse the longitudinal relationship
between an outcome variable Y and a predictor variable X.

outcome variable Y at t − 2 or t − 3. The idea underlying the autoregressive
model is that the value of an outcome variable at each time-point is primarily
influenced by the value of this variable onemeasurement earlier. To estimate
the ‘real’ influence of the predictor variables on the outcome variable, the
model should therefore correct for the value of the outcome variable at
time-point t − 1.

5.2.4 Overview
Figure 5.6 gives an overview of the way in which the regression coefficients
of interest relate the development of a particular predictor variable X to the
development of an outcome variable Y in the different (alternative) models
used to analyse longitudinal data. It should be noted that, like the standard
model, all alternativemodels can also bemodelled with random coefficients.

5.2.5 Example
5.2.5.1 Introduction

In the following example the results of the threementioned alternativemod-
els will be compared to the standard model (described in Chapter 4). For
all three models both GEE analysis and random coefficient analysis will be
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used to estimate the regression coefficients. When GEE is used a correction
is made for the within-subjects correlations by assuming a certain ‘working
correlation structure’. It was argued that the choice of a particular structure
can be based on the observed within-subject correlations of the outcome
variable Y . When the longitudinal analysis is limited to the ‘within-subject’
relationships (i.e. modelling of changes and the autoregressive model), the
correction for the within-subject correlations is somewhat different than for
the standardmodel.When changes aremodelled, the within-subject correla-
tions between the changes are in general much lower than the within-subject
correlations of the ‘absolute’ values. The same is true for the autoregressive
model. The latter is perhaps a bit difficult to understand, but it has to do
with the fact that in GEE analysis a correction is made for the ‘correlated
errors’, rather than for the correlated ‘observations’. Although this is basic-
ally the same, in an autoregressive model part of the correlations in the
observations is ‘explained’ by the addition of the outcome variable Y at t − 1
to the model. In an autoregressive model, the within-subject correlations
of the ‘errors’ are therefore different from the within-subject correlations of
the ‘observations’. In fact, in both the modelling of changes and the autore-
gressive model, correction for the within-subject correlations is part of the
model. In those situations, an independent correlation structure will (often)
be the most appropriate choice.
In the modelling of changes yet another problem arises, because changes

between subsequent measurements can be defined in many different ways
(see Chapter 8). In the following examples the changes are defined as the
absolute change between subsequent measurements.

5.2.5.2 Data structure for alternative models
There is no statistical software available which is capable of performing one
of the alternative models automatically. For the alternative modelling of
longitudinal data, the dataset has to be reconstructed so that the standard
software can be used for either GEE analysis or random coefficient analysis.
Theway inwhich the data should be reconstructed is illustrated in Figure 5.7.

5.2.5.3 GEE analysis
The output of theGEE analysis, used to answer the question of whether there
is a longitudinal relationship between outcome variable Y and the predictor
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Figure 5.7. Data structures for various models used to analyse longitudinal relationships.

variables X1 to X4 and time, based on alternative longitudinal models is
shown in Output 5.1 (time-lag model), Output 5.2 (modelling of changes)
and Output 5.3 (autoregressive model).
In addition to the changes in outcome variable Y, in the modelling of

changes, the changes in the predictor variable X2 are added to the model.
For all other predictor variables the absolute values, either at baseline (for
the time-independent predictor variables X1 and X4) or at the start of the
time period over which the changes are calculated (for the time-dependent
predictorvariable X3), areaddedto themodel.Furthermore, fromOutput5.2
it can be seen that an independent correlation structure has been chosen as
‘working correlation structure’. Therefore, the last line of the output, which
provides the estimation of the common correlation, is lacking.



111 Alternative models

Output 5.1. Results of a GEE analysis with
a time-lag model

Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
-----------------------------------------

0 Constant 2.883 0.719 0.000

2 TIME 0.156 0.017 0.000

4 X1 0.123 0.287 0.668

5 X2 0.151 0.031 0.000

6 X3 0.097 0.070 0.164

7 X4 0.128 0.130 0.323
-----------------------------------------
n:147 s:0.733 #iter:12

Estimate of common correlation 0.577

Output 5.2. Results of a GEE analysis with
modelling of changes

Linear Generalized Estimating Equations

Response: DELY Corr: Independence

Column Name Coeff StErr p-value
------------------------------------------

0 Constant -0.615 0.182 0.001

2 TIME 0.161 0.013 0.000

4 X1 0.059 0.076 0.431

5 DELX2 0.084 0.025 0.001

6 X3 0.118 0.056 0.036

7 X4 0.077 0.031 0.015
------------------------------------------
n:147 s:0.529 #iter:12

As for the modelling of changes, an independent correlation structure
is also chosen for the autoregressive model (Output 5.3). Moreover, in the
output a new predictor variable is present (YCONTPRE). This predictor
variable is the value of outcome variable Y measured one time-point earlier
(see explanation of the autoregressive model in Section 5.2.3). From the
output it can be seen that the value of Y at t − 1 is highly positively related
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Output 5.3. Results of a GEE analysis with an
autoregressive model

Linear Generalized Estimating Equations

Response: YCONT Corr: Independence

Column Name Coeff StErr p-value
------------------------------------------

0 Constant -0.125 0.251 0.619

2 TIME 0.154 0.013 0.000

4 X1 0.139 0.096 0.149

5 X2 0.091 0.014 0.000

6 X3 0.012 0.048 0.802

7 X4 0.027 0.043 0.531

8 YCONTPRE 0.767 0.025 0.000
------------------------------------------

n:147 s:0.506 #iter:12

Table 5.1. Regression coefficients and standard errors regarding the longitudinal
relationship (estimated by GEE analysis) between outcome variable Y and several
predictor variables (X1 to X4 and time); the standard or marginal model compared to
alternative models

Standard model Time-lag model Modelling of changes Autoregressive model

X1 −0.02 (0.27) 0.12 (0.29) 0.06 (0.07) 0.14 (0.10)

X2 0.11 (0.02) 0.15 (0.03) 0.08 (0.03) 0.09 (0.01)

X3 −0.11 (0.06) 0.10 (0.07) 0.12 (0.06) 0.01 (0.05)

X4 0.01 (0.13) 0.13 (0.13) 0.08 (0.03) 0.03 (0.04)

Time 0.11 (0.01) 0.16 (0.02) 0.16 (0.01) 0.15 (0.01)

to the development of outcome variable Y , which is of course not really
surprising. The regression coefficient of the predictor variable YCONTPRE
is also known as the autoregression coefficient. In Table 5.1 the results of the
different GEE analyses are summarized.

5.2.5.4 Random coefficient analysis
Theoutputof a randomcoefficient analysis to answer thequestionofwhether
there is a longitudinal relationship between outcome variable Y and the
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predictor variables X1 to X4 and time, based on alternative longitudinal
models, is shown in Output 5.4 (time-lag model), Output 5.5 (modelling of
changes) and Output 5.6 (autoregressive model). The predictor variables in
the random coefficient analysis were modelled in the same way as has been
described for the corresponding GEE analysis.

Output 5.4. Results of a random coefficient analysis with a time-lag model

log likelihood = -640.37118
--------------------------------------------------------------------------
ycont Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------
time 0.1582593 0.01579 10.023 0.000 0.1273114 0.1892072

x1 0.100344 0.2783983 0.360 0.719 -0.4453067 0.6459947

x2 0.1406945 0.0248505 5.662 0.000 0.0919884 0.1894006

x3 0.0958463 0.0662912 1.446 0.148 -0.034082 0.2257746

x4 0.1318902 0.1204924 1.095 0.274 -0.1042707 0.368051

cons 2.948436 0.677334 4.353 0.000 1.620886 4.275986
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------
0.20557651 (0.01383197)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 0.29172121 (0.08177964)

cov(1,2): -0.01191011 (0.01513772) cor(1,2): -0.25634858

var(2): 0.00739949 (0.00364189)

From the output of both the modelling of changes and the autoregressive
model, it can be seen that both the variance of the random intercept and the
variance of the random slope are close to zero, although for the modelling of
changes this is far more pronounced than for the autoregressive model. So,
assuming a random intercept and a randomslope in the longitudinal random
coefficient model is not really necessary. In fact, this finding is comparable
to the fact that in the GEE analysis for these two alternative models an
independent correlation structure is considered to be the most appropriate
choice for a ‘working correlation structure’. In Table 5.2 the results of the
different random coefficient analyses are summarized.
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Output 5.5. Results of a random coefficient analysis with modelling of changes

log likelihood = -571.64658
--------------------------------------------------------------------------
dely Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------
time 0.1613603 0.0143233 11.266 0.000 0.1332871 0.1894334

x1 0.0594099 0.109767 0.541 0.588 -0.1557295 0.2745492

delx2 0.0842789 0.020463 4.119 0.000 0.0441722 0.1243857

x3 0.1178238 0.0569115 2.070 0.038 0.0062793 0.2293684

x4 0.0769342 0.0474924 1.620 0.105 -0.0161492 0.1700175

cons -0.6151973 0.2684902 -2.291 0.022 -1.141428 -0.0889663
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------
0.27737764 (0.01446915)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 7.729×10-10 (0.00002627)

cov(1,2): -3.125×10-10 (0.0000106) cor(1,2): -1

var(2): 1.263×10-10 (4.280×10-6)

5.3 Comments

Although themagnitude of the regression coefficients for the different mod-
els cannot be interpreted in the same way, a comparison between the re-
gression coefficients and standard errors shows directly that the results are
quite different. Using an alternative model can lead to different conclusions
thanwhenusing the standardmodel.On the onehand this is strange, because
all analyses attempt to answer the question of whether there is a relationship
betweenoutcomevariableY and the fourpredictorvariables and time.Onthe
other hand, however, with the fourmodels, different parts of the longitudinal
relationships are analysed, and the results of themodels shouldbe interpreted
in different ways. To obtain the most general answer to the question of
whether there is a longitudinal relationship between the outcome variable Y
and the four predictor variables and time, the results of severalmodels should
be combined (Twisk, 1997). In practice, however, this almost never happens:
a priori themost appropriatemodel is chosen (usually the ‘standard’model),
and only those results are reported.
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Output 5.6. Results of a random coefficient analysis with an autoregressive model

log likelihood = -538.88027
--------------------------------------------------------------------------

ycont Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------

time 0.1544628 0.0141067 10.950 0.000 0.1268142 0.1821114

x1 0.1319348 0.1086507 1.214 0.225 -0.0810165 0.3448862

x2 0.090171 0.0148155 6.086 0.000 0.0611331 0.1192089

x3 0.0077988 0.0486855 0.160 0.873 -0.0876232 0.1032207

x4 0.0317883 0.0491346 0.647 0.518 -1.0645138 0.1280903

ycontpre 0.760324 0.0291116 26.118 0.000 0.7032664 0.8173816

cons -0.0883166 0.2944095 -0.300 0.764 -0.6653485 0.4887154
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------
0.2483483 (0.01470989)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 0.0134973 (0.02323551)

cov(1,2): -0.00475411 (0.00739352) cor(1,2): -1

var(2): 0.00167453 (0.00239752)

Table 5.2. Regression coefficients and standard errors regarding the longitudinal
relationship (estimated by random coefficient analysis) between outcome variable Y and
several predictor variables (X1 to X4 and time); the standard or marginal model compared
to alternative models

Standard model Time-lag model Modelling of changes Autoregressive model

X1 −0.01 (0.27) 0.10 (0.28) 0.06 (0.11) 0.13 (0.11)

X2 0.11 (0.02) 0.14 (0.02) 0.08 (0.02) 0.09 (0.01)

X3 −0.12 (0.06) 0.10 (0.07) 0.11 (0.06) 0.01 (0.05)

X4 0.04 (0.12) 0.13 (0.12) 0.08 (0.05) 0.03 (0.05)

Time 0.11 (0.01) 0.16 (0.02) 0.16 (0.01) 0.15 (0.01)

In Chapter 4 it has already been mentioned that GEE analyses do not
give reliable information about the ‘fit’ of the statistical model, whereas with
random coefficient analysis, likelihood values can be obtained. However,
when deciding which model should be used to obtain the best answer to
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a particular research question, comparing the ‘fit’ of the models will not
provide much interesting information. First of all, only the time-lag model
and the autoregressive model can be directly compared to each other, be-
cause the autoregressive model can be seen as an extension of the time-lag
model. The modelling of changes is totally different, while in the standard
model more observations are used than in the alternative models. The prob-
lem is that the number of observations highly influences the likelihood of
each specific statistical model. Looking at the fit of the models, it is obvi-
ous for instance that the autoregressive model provides a much better fit
than the time-lag model. This is due to the fact that a high percentage of
variance of the outcome variable Y at time-point t is explained by the value
of the outcome variable Y at t − 1. This can be seen from the values of
the scale parameter (s ) presented in the GEE output and the log likelihood
presented in the output of the random coefficient analysis. Both values are
much lower in the autoregressive model than in the time-lag model. This
does not mean that the autoregressive model should be used to obtain the
best answer to the question of whether there is a longitudinal relationship
between outcome variable Y and one (or more) predictor variable(s) X . In
general, it should be realized that it is better to base the choice of a specific
longitudinal model on logical considerations instead of statistical ones. If,
for instance, it is expected that a predictor variable measured at time-point
t will influence the outcome variable at time-point t + 1, then a time-lag
model is suitable. If, however, it is expected that the predictor and outcome
variables are more directly related, a time-lag model is not suitable, and so
forth.
Aswith the standardmodel discussed inChapter 4, in order to simplify the

discussion the models presented in Chapter 5 were all simple linear models:
no squared terms, no complicated relationships with time, no difficult in-
teractions, etc. Furthermore, in the explanation of the various alternative
models it was mentioned that the remaining parts of the models were the
same as the standard model. This is not necessarily true. It is also possible to
combine different models with each other. For instance, in the autoregres-
sive model (Equation (5.3)) the outcome variable at time-point t (Yit) was
related to the predictor variable at time-point t − 1 (Xit−1), corrected for
the value of the outcome variable at t − 1 (Yit−1). It is, however, possible to
remove the time lag from this model, by using the value of the predictor



117 Comments

variable at t, instead of its value at time-point t − 1. It must be stressed,
however, that the choice of possible combinations of different models must
also be based on logical considerations and on the research questions to be
answered.
It has already been mentioned that with the modelling of changes and

with the autoregressive model the between-subject part of the analysis is
more or less removed from the analysis. With both models only the longit-
udinal relationships are analysed. It is therefore surprising that the results
of the longitudinal analyses with the modelling of changes and the autore-
gressive model are quite different (see Tables 5.1 and 5.2). One reason for
the difference in results is that both alternative models use a different model
of change. This can be explained by assuming a longitudinal study with just
two measurements. In the autoregressive model, Y2 = β0 + β1Y1, while in
the modelling of changes, Y2 − Y1 = β0 (where β0 is the absolute change
between subsequent measurements), which is equal to Y2 = β0 + Y1. The
difference between the two equations is the coefficient β1. In the modelling
of changes the ‘change’ is a fixed parameter, while in the autoregressivemodel
the ‘change’ is a function of the value of Y1 (for a detailed explanation of this
phenomenon, see Chapter 8). Another reason for the differences in results
between the modelling of changes and the autoregressive model is the dif-
ferent modelling of the predictor variables. It has already been mentioned
that for the modelling of changes the changes in the predictor variables were
also modelled. In the autoregressive model, however, the predictor variables
measured at t − 1 were used. It is obvious that different modelling of the
predictor variables can lead to different results. To illustrate this, Output 5.7
shows the results of an autoregressive model, in which the predictor vari-
ables are modelled in the same way as has been described for the modelling
of changes.
FromOutput 5.7 it can be seen that (as expected) the results of an autore-

gressive model with the predictor variables modelled as changes are closer
to the results of the modelling of changes than when the predictor variables
were modelled at t − 1. The most important message which emerges is that
the modelling of the predictor variables can highly influence the results of
the longitudinal analyses performedwith alternativemodels. In other words,
one should be very careful in the interpretation of the regression coefficients
derived from such models.
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Output 5.7. Results of a GEE analysis with an
autoregressive model, in which the predictor variables
are modelled in the same way as in the modelling of
changes

Linear Generalized Estimating Equations

Response: YCONT Corr: Independence

Column Name Coeff StErr p-value
------------------------------------------------

0 Constant 0.262 0.258 0.310

2 TIME 0.174 0.013 0.000

4 X1 -0.005 0.101 0.964

5 DELX2 0.063 0.024 0.010

6 X3 0.028 0.048 0.565

7 X4 0.115 0.042 0.006

8 YCONTPRE 0.810 0.022 0.000
------------------------------------------------
n:147 s:0.516 #iter:11

Table 5.3. Standardized regression coefficients and 95% confidence intervals
(calculated with GEE analysis) regarding the longitudinal relationship between
lung function parameters (forced vital capacity (FVC) and the forced
expiratory volume in one second (FEV1)) and smoking behaviour; a
comparison between the standard model and the modelling of changes

FVC FEV1

Standard model −0.03 (−0.11 to 0.06) −0.01 (−0.09 to 0.06)

Modelling of changes −0.13 (−0.22 to −0.04)∗∗ −0.14 (−0.25 to −0.04)∗∗

∗∗ p < 0.01.

5.4 Another example

One of the most striking examples to illustrate the necessity of using in-
formation from different models has been given in a study also based on
data from the Amsterdam Growth and Health Longitudinal Study (Twisk
et al., 1998a). The purpose of that study was to investigate the relationship
between smoking behaviour and the development of two lung function pa-
rameters: forced vital capacity (FVC) and forced expiratory volume in one
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second (FEV1). Although the results of the standard model did not show
any relationship between smoking behaviour and the development of lung
function parameters, the modelling of changes revealed a strong negative
relationship between smoking behaviour and the development of both lung
function parameters (see Table 5.3). So, although the absolute values of the
lung function parameters were not influenced by smoking behaviour, the
changes in lung function parameters over time were highly influenced by
smoking behaviour. This study is a nice example of the situation illustrated
earlier in Figure 5.4.
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Dichotomous outcome variables

6.1 Simple methods

6.1.1 Two measurements
When a dichotomous outcome variable is measured twice over time in the
same subjects, a 2 × 2 table can be constructed as shown below (where n
stands for the number of subjects and p stands for a proportion of the total
number of subjects N).

t2

1 2 Total

t1 1 n11(p11) n12(p12) n1(t1)(p1(t1))

2 n21(p21) n22(p22) n2(t1)(p2(t1))

Total n1(t2)(p1(t2)) n2(t2)(p2(t2)) N(1)

The simplest way to estimate the development over time is to compare the
proportion of subjects in group 1 at t1(p1(t1)) with the proportion of sub-
jects in group 1 at t2(p1(t2)). The difference in proportions is calculated as
(p1(t2) − p1(t1)), and Equation (6.1) shows how to calculate the correspond-
ing standard error:

SE(p1(t2) − p1(t1)) =
√
n1(t2) + n1(t1)

N
(6.1)

where SE is the standard error, p1(t2) is the proportion of subjects in group 1
at t = 2, p1(t1) is the proportion of subjects in group 1 at t = 1, n1(t2) is the
number of subjects in group 1 at t = 2, n1(t1) is the number of subjects in
group 1 at t = 1, and N is the total number of subjects.
The 95%confidence interval for the difference (difference± 1.96 times the

standard error) is used to answer the question ofwhether there is a significant

120
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change over time. The problem with the difference in proportions is that it
basically provides an indication of the difference between the changes in
opposite directions. If all subjects from group 1 at t = 1 move to group 2 at
t = 2, and all subjects from group 2 at t = 1 move to group 1 at t = 2, the
difference in proportions reveals no changes over time.
A widely usedmethod to determine whether there is a change over time in

a dichotomous outcome variable is the McNemar test. This is an alternative
χ2 test, which takes into account the fact that the observed proportions in the
2 × 2 table are not independent. The McNemar test is, in principle, based
on the difference between n12 and n21, and the test statistic follows a χ2

distribution with one degree of freedom (Equation (6.2)).

χ2 = (n12 − n21 − 1)2

n12 + n21
(6.2)

where n12 is the number of subjects in group 1 at t = 1 and in group 2 at
t = 2, and n21 is the number of subjects in group 2 at t = 1 and in group 1
at t = 2.
TheMcNemar test determineswhether the change inonedirection is equal

to the change in another direction. So the McNemar test has the same dis-
advantages as have been mentioned above for the difference in proportions.
It tests the difference between the changes in opposite directions.
A possible way in which to estimate the total change over time is to calcu-

late the proportion of subjects who change from one group to another: i.e.
p12 + p21. This ‘proportionof change’ canbe tested for significancebymeans
of the 95% confidence interval (±1.96 times the standard error). The stand-
ard error of this proportion is calculated as:

SE(pchange) =
√

pchange − (1 − pchange)

N
(6.3)

where SE is the standard error, pchange is the ‘proportion of change’ equal to
p12 + p21, and N is the total number of subjects.
If one is only interested in the proportion of subjects who change in a

certain direction (i.e. only a ‘decrease’ or ‘increase’ over time) the same
procedure can be followed for separate changes. In this respect, a ‘proportion
of increase’ equal to p12 or a ‘proportion of decrease’ equal to p21 can be
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calculated and a 95% confidence interval can be constructed, based on the
standard error calculated with Equation (6.3).
It should be noted that when all individuals belong to the same group

at baseline, the estimate of the change in opposite directions is equal to the
estimate of the total change over time. In that situation, which often occurs
in experimental studies, all methods discussed so far can be used to estimate
the change over time in a dichotomous outcome variable.

6.1.2 More than two measurements
Whenmore than twomeasurements are performed on the same subjects, the
multivariate extension of the McNemar test can be used. This multivariate
extension is known as Cochran’s Q, and it has the same disadvantages as
the McNemar test. It is a measure of the difference between changes in
opposite directions, while in longitudinal studies one is generally interested
in the total change over time. To analyse the total change over time, the
‘proportion of change’ can be calculated in the same way as in the situation
with two measurements. To do this, (T − 1) 2 × 2 tables must first be con-
structed (for t = 1 and t = 2, for t = 2 and t = 3, and so on). The next step
is to calculate the ‘proportion of change’ for each 2 × 2 table. To calculate
the total proportion of change, Equation (6.4) can be applied:

p̄ = 1

N(T − 1)

N∑

i=1

ci (6.4)

where p̄ is the total ‘proportion of change’, N is the number of subjects, T is
the number of measurements, and ci is the the number of changes for
individual i over time.

6.1.3 Comparing groups
To compare the development over time between two groups, for a dicho-
tomous outcome variable the ‘proportion of change’ in the two groups can
be compared. This can be done by applying the test for two independent
proportions: (pg1 − pg2). The standard error of this difference (needed to
create a 95% confidence interval and for testing whether there is a significant
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difference between the two groups) is calculated by Equation (6.5):

SE(pg1 − pg2) =
√[

pg1(1 − pg1)

Ng1

]
+

[
pg2(1 − pg2)

Ng2

]
(6.5)

where SE is the standard error, pg1 is the ‘proportion of change’ in group 1,
pg2 is the ‘proportion of change’ in group 2, Ng1 is the number of subjects in
group 1, and Ng2 is the number of subjects in group 2.
Of course, this procedure can also be carried out to determine the ‘pro-

portion of change’ in a certain direction (i.e. the ‘proportion of increase’ or
the ‘proportion of decrease’). It should be realized that the calculation of
the ‘proportion of change’ over a particular time period is primarily useful
for the longitudinal analysis of datasets with only two measurements.
For more information on the analysis of proportions and differences in pro-
portions, reference is made to the classical work of Fleiss (1981).

6.1.4 Example
6.1.4.1 Introduction

The dataset used to illustrate longitudinal analysis with a dichotomous out-
come variable is the same as that used to illustrate longitudinal analysis with
continuous outcome variables. The only difference is that the outcome vari-
able Y is dichotomized (Ydich). This is done by means of the 66th percentile.
At each of the repeated measurements the upper 33% are coded as ‘1’, and
the lower 66% are coded as ‘0’ (see Section 1.4).

6.1.4.2 Development over time
To analyse the development of a dichotomous outcome variable Ydich over
time, the situation with two measurements will first be illustrated. From
the example dataset the first (t = 1) and the last (t = 6) measurements will
be considered. Let us first investigate the 2 × 2 table, which is presented in
Output 6.1.
Because thedichotomizationofoutcomevariableYdich wasbasedonafixed

value (the 66th percentile), it is defined that there is no difference between
the changes over time in opposite directions. The proportion of subjects
in group 1 at t = 1 (33.3%) is almost equal to the proportion of subjects
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Output 6.1. 2 x 2 table indicating the relationship
between the outcome variable Ydich at t = 1 and t = 6

YDICHT1 OUTCOME VARIABLE Y AT T1 (2 GROUPS)

by YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

YDICHT6

Count

Row

0.00 1.00 Total

YDICHT1

0.00 80 17 97

66.0

1.00 18 32 50

34.0

Column 98 49 147

Total 66.7 33.3 100.0

in group 1 at t = 6 (34.0%). Therefore, the McNemar test is useless in
this particular situation. However, just as an example, the result of the
McNemar test is presented in Output 6.2.

Output 6.2. Result of the McNemar test analysing the development over time
of a dichotomous outcome variable Ydich between t = 1 and t = 6

McNemar Test

YDICHT1 OUTCOME VARIABLE Y AT T1 (2 GROUPS)

with YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

YDICHT6
1.00 0.00 Cases 147

0.00 17 80 Chi-Square 0.0000

YDICHT1

1.00 32 18 Significance 1.0000

As expected, the McNemar test statistic chi-square = 0.0000 and the cor-
responding p-value is 1.0000, which indicates that there is no change over
time for outcome variable Ydich. Both outputs discussed so far illustrate per-
fectly the limitation of these two methods, i.e. only the difference between
the changes over time in opposite directions is taken into account.
From the 2 × 2 table, also the total ‘proportion of change’ and the corres-

ponding 95% confidence interval can be calculated. The ‘proportion of
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change’ is (18 + 17)/147 = 0.24. The standard error of this proportion,
which is calculated according to Equation (6.3), is 0.035. With these two
components the 95% confidence interval can be calculated, which leads to
an interval that ranges from 0.17 to 0.31, indicating a highly significant
change over time.
When the development over time of the outcome variable Ydich is analysed

using all six measurements, the multivariate extension of the McNemar test
(Cochran’s Q) can be used. However, Cochran’s Q has the same limitations
as the McNemar test. So again it is useless in this particular situation, in
which the groups are defined according to the same (fixed) percentile at
each measurement. However, Output 6.3 shows the result of the Cochran’s
Q test. As expected, the significance level of Cochran’s Q (0.9945) is close
to one, indicating no difference between the changes over time in opposite
directions.

Output 6.3. Result of the Cochran’s Q test calculated for the longitudinal
development of the dichotomized outcome variable Ydich from t = 1 to t = 6,
using data from all repeated measurements

Cochran Q Test

Cases

=0.00 =1.00 Variable

97 50 YDICHT1 OUTCOME VARIABLE Y AT T1 (2 GROUPS)

99 48 YDICHT2 OUTCOME VARIABLE Y AT T2 (2 GROUPS)

96 51 YDICHT3 OUTCOME VARIABLE Y AT T3 (2 GROUPS)

98 49 YDICHT4 OUTCOME VARIABLE Y AT T4 (2 GROUPS)

99 48 YDICHT5 OUTCOME VARIABLE Y AT T5 (2 GROUPS)

98 49 YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

Cases Cochran Q DF Significance

147 0.4298 5 0.9945

To evaluate the total change over time, Equation (6.6) can be used. First of
all, the (T − 1) 2 × 2 tables must be constructed (Output 6.4). From these
tables, the total ‘proportion of change’ can be calculated.
The sum of the changes is 143, so the ‘proportion of change’ is 143/

(147 × 5) = 0.19. The corresponding 95% confidence interval (based on the
standard error calculated with Equation (6.3)) is [0.16 to 0.22], indicating
a highly significant change over time.
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Output 6.4. Five 2 x 2 tables used to calculate the ‘proportion of change’ when there
are more than two measurements

YDICHT2 YDICHT3

Count Count

Row Row

0.00 1.00 Total 0.00 1.00 Total

YDICHT1 YDICHT2

0.00 83 14 97 0.00 83 16 99

1.00 16 34 50 1.00 13 35 48

Column 99 48 147 Column 96 51 147

YDICHT4 YDICHT5

Count Count

Row Row

0.00 1.00 Total 0.00 1.00 Total

YDICHT3 YDICHT4

0.00 84 12 96 0.00 86 12 98

1.00 14 37 51 1.00 13 36 49

Column 98 49 147 Column 99 48 147

YDICHT6

Count

Row

0.00 1.00 Total

YDICHT5

0.00 82 17 99

1.00 16 32 48

Column 98 49 147

6.1.4.3 Comparing groups
When the aim of the study is to investigate whether there is a difference in
development over time between several groups, the ‘proportion of change’
in the groups can be compared. In the example dataset the population can be
divided into two groups, according to the time-independent predictor vari-
able X4 (i.e. males and females). For both groups a 2 × 2 table is constructed
(Output 6.5), indicating the changes between t = 1 and t = 6 in Ydich.
The next step is to calculate the ‘proportion of change’ for both groups.

For the group X4 = 1, pchange = 13/69 = 0.19; while for the group X4 = 2,
pchange = 0.28. From these two proportions the difference and the 95%
confidence interval can be calculated. The latter is based on the standard
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Output 6.5. 2 x 2 tables indicating the relationship between
the outcome variable Ydich at t = 1 and t = 6 for two groups
divided by X4 (i.e. gender)

X4 equals 1

YDICHT1 OUTCOME VARIABLE Y AT T1 (2 GROUPS)

by YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

YDICHT1

Count

Row

0.00 1.00 Total

YDICHT6

0.00 40 5 45

65.2

1.00 8 16 24

34.8

Column 48 21 69

Total 69.6 30.4 100.0

X4 equals 2

YDICHT1 OUTCOME VARIABLE Y AT T1 (2 GROUPS)

by YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

YDICHT6

Count

Row

0.00 1.00 Total

YDICHT1

0.00 40 12 52

66.7

1.00 10 16 26

33.3

Column 50 28 78

64.1 35.9 100.0

error calculatedwithEquation (6.5). The difference in ‘proportionof change’
between the two groups is 0.09, with a 95% confidence interval of [−0.05
to 0.23]. So, there is a difference between the two groups (i.e. females have a
9%greater changeover time),but thisdifference isnot statistically significant.
When there are more than twomeasurements, Equation (6.4) can be used

to calculate the ‘proportion of change’ in both groups. After creating (T − 1)
separate 2 × 2 tables, for group X4 = 1 this proportion equals 0.18, and for
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group X4 = 2, this proportion equals 0.21. The difference in ‘proportion of
change’ between the two groups (i.e. 0.03) can be tested for significance by
means of the 95% confidence interval. Based on the standard error, which is
calculated with Equation (6.5), this interval is [−0.03 to 0.09], so the (small)
difference observed between the two groups is not statistically significantly
different from zero.

6.2 Relationships with other variables

6.2.1 ‘Traditional’ methods
With the (simple) methods described in Section 6.1 it was possible to answer
the question of whether there is a change/development over time in a cer-
tain dichotomous outcome variable, and whether there is a difference in
change/development over time between two ormore groups. Both questions
can also be answered by using more complicated methods, which must be
applied in any other situation than described above, for instance to answer
the question of whether there is a relationship between the development of
a dichotomous outcome variable Ydich and one or more predictor variables
X . In Section 4.2, it was discussed that for continuous outcome variables
‘traditional’, i.e. cross-sectional,methods are sometimesused to analyse these
longitudinal relationships. For dichotomous outcome variables, comparable
procedures are available. The most popular choice is the method illustrated
in Figure 4.2, i.e. ‘long-term exposure’ to certain predictor variables is related
to the dichotomous outcome variable at the end of the follow-up period. It
is obvious that this analysis can be performed with (simple) cross-sectional
logistic regression analysis.

6.2.2 Example
Output 6.6 presents the results of a logistic regression analysis, in which the
‘long-term exposures’ to the predictor variables X1 to X4 between t = 1 and
t = 6 (using all available data) are related to the outcome variable Ydich at
t = 6.
From the significance levels it can be seen that ‘long-term exposure’ to X2

is significantly associatedwithYdich at t = 6. The level of significance is based
on the Wald statistic, which is defined as the regression coefficient divided
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Output 6.6. Results of a logistic regression analysis relating ‘long-term
exposures’ to predictor variables X1 to X4 between t = 1 and t = 6 (using all
available data) to the dichotomous outcome variable Ydich at t = 6

B Std. error Wald df Sig
--------------------------------------------------------------
Constant -5.863 2.873 4.165 1 0.000

X1 1.438 1.120 1.648 1 0.199

AveragX2 0.861 0.205 17.680 1 0.000

AveragX3 -0.122 0.391 0.097 1 0.755

X4 -0.607 0.500 1.472 1 0.225
--------------------------------------------------------------
Dependent variable: DICHOTOMOUS OUTCOME VARIABLE YDICH AT T6

by its standard error, squared. The Wald statistic follows a χ2 distribution
with (in this case) one degree of freedom. The corresponding odds ratio
canbecalculatedas exp(regressioncoefficient),which is equal to2.36, and the
95%confidence interval canbecalculatedas exp(regressioncoefficient±1.96
times the standard error of the regression coefficient), which is [1.58 to 3.53].
The interpretation of the odds ratio is straightforward: a one point difference
in the ‘long-term exposure’ to X2 between two subjects is associated with a
2.37 times higher odds of being in the upper tertile of the outcome variable
Ydich at t = 6. It should be noted that a 2.37 times higher odds is usually
(loosely) interpreted as a 2.37 times greater ‘risk’, which is comparable but
not the same.

6.2.3 Sophisticated methods
In general, when a dichotomous outcome variable is used in a longitudinal
study, and the objective of the study is to analyse the relationship between
the development of such a variable and the development of one ormore pre-
dictor variables, it is possible to use the sophisticated methods mentioned
before (i.e. GEE analysis and random coefficient analysis). In Chapter 4, it
was extensively explained that for continuous outcome variables in longit-
udinal studies the sophisticated techniques canbe considered as ‘longitudinal
linear regressionanalysis’.Analogous to this,GEEanalysis and randomcoeffi-
cient analysis of a dichotomous outcome variable in longitudinal studies can
be considered as ‘longitudinal logistic regression analysis’. So, comparable
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to Equation (4.3), the longitudinal logistic model can be formulated as in
Equation (6.6).

In

(
Pr (Yit = 1)

1 − Pr (Yit = 1)

)
= β0 +

j∑

j=1

β1j + β2t +
K∑

k=1

β3k Zikt

+
M∑

m=1

β4mGim (6.6a)

In a different notation:

Pr(Yit = 1)

= 1

1 + exp

[

−
(

β0 +
J∑

j=1

β1j Xitj + β2t +
K∑

k=1

β3k Zikt +
M∑

m=1

β4mGim

)]

(6.6b)

wherePr(Yit = 1) is theprobability that theobservations at t1 to tT of subject i
equal 1 (whereT is the thenumberofmeasurements and1means that subject
i belongs to the group of interest), β0 is the intercept, Xijt is the independent
variable j of subject i at time t, β1j is the regression coefficient of independ-
ent variable j , J is the number of independent variables, t is time, β2 is the
regression coefficient of time, Zikt is the time-dependent covariate k of sub-
ject i at time t,β3k is the regression coefficient of time-dependent covariate k,
K is the number of time-dependent covariates, Gim is the time-independent
covariatem of subject i ,β4m is the regression coefficient of time-independent
covariatem, and M is the number of time-independent covariates.
Although the model looks quite complicated, it is in fact nothing more

than an extension of the (simple) logistic regression model. The extension
is presented in the subscript t, which indicates that the same individuals
can be repeatedly measured over time. In this model the probability of
belonging to a group (coded 1) from t1 to tT (Yit) is related to several pre-
dictor variables (Xijt), several time-dependent covariates (Zikt), several time-
independent covariates (Gim) and time (t). Like in (simple) multiple logistic
regression analysis, all predictor variables and covariates can be continuous,
dichotomous or categorical, although in the latter situation dummy coding
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can or must be used. The coefficient of interest is β1, because this coefficient
reflects the relationship between the development of a certain predictor vari-
able (Xit) and belonging to the group of interest from t1 to tT . Like in simple
logistic regression, this coefficient (β1) can be transformed into an odds ratio
(exp(β1)). The interpretation of the regression coefficients (i.e. odds ratios)
is equivalent to the ‘combined’ interpretation of the regression coefficients
for continuous outcome variables (see the example in Section 6.2.4 for a
detailed explanation).
Analogous to the situation with continuous outcome variables, with GEE

analysis a correction is made for the within-subject correlations between the
repeated measurements by assuming a ‘working correlation structure’, while
with randomcoefficient analysis this correction ismade by allowing different
regression coefficients to be random.

6.2.4 Example
6.2.4.1 Generalized estimating equations

For dichotomous outcome variables, the GEE approach also requires the
choice of a ‘working correlation structure’. Although there are the same
possibilities as have been discussed for continuous outcome variables (see
Section 4.5.2), it is not possible to use the correlation structure of the ob-
served data as a guide for the choice of ‘working correlation structure’. In this
example, an exchangeable correlation structure (which is the default option
in many software packages) will be used.
Output 6.7 presents the result of the logistic GEE analysis in which Ydich

is related to the four predictor variables (X1 to X4), and time.
The output of the so-called binomial generalized estimating equations is

comparable to the output of a linear GEE analysis, which was discussed in
Section 4.5.4.2. The outcome variable is YDICH, which is the dichotomized
version of the outcome variable Y, and the correlation structure used is
‘exchangeable’. The second part of the output consists of the parameter
estimates. For each of the predictor variables the magnitude of the regres-
sion coefficients, the standard error and the corresponding p-values are
presented. In addition, for the logistic GEE analysis, the odds ratio and the
corresponding 95% confidence intervals are also shown. With regard to the
four predictor variables, only X2 is significantly related to the development of
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Output 6.7. Results of the logistic GEE analysis performed on the example
dataset

Binomial Generalized Estimating Equations
Response: YDICH Corr: Exchangeable

Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -2.270 1.916 0.236

2 TIME -0.077 0.037 0.039 0.926 0.861 0.996

4 X1 0.222 0.757 0.770 1.248 0.283 5.507

5 X2 0.340 0.063 0.000 1.404 1.242 1.588

6 X3 -0.151 0.198 0.446 0.860 0.583 1.267

7 X4 0.084 0.374 0.822 1.088 0.523 2.264
----------------------------------------------------------------
n:147 s:0.982 #iter:13

Estimate of common correlation 0.488

the dichotomous outcome variable Ydich. The regression coefficient is 0.340,
and the odds ratio is 1.404. The 95% confidence interval ranges from 1.242
to 1.588. The interpretation of this odds ratio is somewhat complicated. As
for the regression coefficients calculated for a continuous outcome variable,
the odds ratios can be interpreted in two ways. (1) The ‘cross-sectional’ or
‘between-subjects’ interpretation: a subject with a one-unit higher score for
predictor variable X2, compared to another subject, has a 1.404 times higher
odds of being in the highest group for the dichotomous outcome variable
Ydich. (2) The ‘longitudinal’ or ‘within-subject’ interpretation: an increase of
one unit in predictor variable X2 within a subject over a certain time period
is associatedwith a 1.404 times higher odds ofmoving to the highest group of
the dichotomous outcome variable Ydich compared to the situation in which
no change occurs in predictor variable X2. The magnitude of the regression
coefficient (i.e. the magnitude of the odds ratio) reflects both relationships,
and it is not clear from the results of this analysis which is themost important
component of the relationship. In Section 6.2.6 an alternative model (i.e. an
autoregressive model) will be presented, in which the ‘longitudinal’ part of
the relationship can be more or less disconnected from the ‘cross-sectional’
part.
The last part of the output shows some additional information provided

by the logistic GEE analysis: the number of subjects used in the analysis
(n = 147), the scale parameter (s = 0.982), the number of iterations needed
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to create the result (#iter:13), and the estimate of common correlation
(0.488). Because an exchangeable correlation structure was chosen, only one
correlation coefficient is estimated.
As in the GEE analysis with a continuous outcome variable, the scale pa-

rameter (also knownas dispersionparameter) is an indicationof the variance
of the model. The interpretation of this coefficient is, however, different to
that in the situation with a continuous outcome variable. This has to do with
the characteristics of the binomial distribution on which the logistic GEE
analysis is based. In the binomial distribution the variance is directly linked
to the mean value (Equation (6.7)).

var( p̄) = p̄ (1 − p̄) (6.7)

where var is the variance, and p̄ is the the average probability.
So, for the logistic GEE analysis, the scale parameter has to be one (i.e. a

direct connection between the variance and the mean). From Output 6.7,
however, it can be seen that the scale parameter was slightly lower than one.
It should be noted that in some software packages the scale parameter for
the logistic GEE analysis is set at a fixed value of one (see Chapter 12).
It is somewhat surprising that time is significantly related to the devel-

opment of outcome variable Ydich (odds ratio of 0.926), because Ydich is
based on fixed cut-off points (i.e. tertiles), and there is only a small change
(maximal 1%) over time. The reason for this negative relationship with time
is the fact that multiple analysis is applied, i.e. a ‘correction’ is made for the
four predictor variables. When a univariate GEE analysis is carried out, with
only time as a predictor variable, the relationship is, as expected, far from
significant (see Output 6.8).

Output 6.8. Results of the GEE analysis with only time as a predictor variable

Binomial Generalized Estimating Equations

Response: YDICH Corr: Exchangeable

Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -0.667 0.175 0.000

2 TIME -0.006 0.031 0.844 0.994 0.935 1.056
----------------------------------------------------------------
n:147 s:1.001 #iter:9

Estimate of common correlation 0.513



Output 6.9. Results of the GEE analyses with an independent (A), a
5-dependent (B), and an unstructured correlation structure (C)

(A)Binomial Generalized Estimating Equations

Response: YDICH Corr: Independence

Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -3.261 1.992 0.102

2 TIME -0.106 0.041 0.009 0.899 0.830 0.974

4 X1 0.557 0.784 0.478 1.745 0.375 8.118

5 X2 0.467 0.090 0.000 1.595 1.338 1.901

6 X3 -0.125 0.248 0.614 0.882 0.542 1.436

7 X4 0.046 0.395 0.908 1.047 0.482 2.272
----------------------------------------------------------------
n:147 s:0.997 #iter:12

(B)Binomial Generalized Estimating Equations

Response: YDICH Corr: 5-Dependence
Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -2.259 1.915 0.238

2 TIME -0.073 0.038 0.052 0.929 0.863 1.001

4 X1 0.228 0.758 0.763 1.257 0.285 5.549

5 X2 0.331 0.061 0.000 1.392 1.235 1.569

6 X3 -0.129 0.193 0.504 0.879 0.602 1.283

7 X4 0.083 0.373 0.824 1.087 0.523 2.258
----------------------------------------------------------------
n:147 s:0.98 #iter:13

Estimate of common correlations 0.549, 0.517, 0.453, 0.486, 0.479

(C)Binomial Generalized Estimating Equations

Response: YDICH Corr: Unspecified
Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -2.194 1.904 0.249

2 TIME -0.077 0.036 0.035 0.926 0.862 0.995

4 X1 0.225 0.756 0.766 1.253 0.284 5.518

5 X2 0.321 0.057 0.000 1.379 1.233 1.542

6 X3 -0.110 0.188 0.560 0.896 0.619 1.296

7 X4 0.082 0.370 0.824 1.086 0.526 2.242
----------------------------------------------------------------
n:147 s:0.978 #iter:13

Estimate of common correlation
1.000 0.565 0.466 0.395 0.491 0.446

0.565 1.000 0.536 0.616 0.532 0.445

0.466 0.536 1.000 0.552 0.553 0.392

0.395 0.616 0.552 1.000 0.559 0.375

0.491 0.532 0.553 0.559 1.000 0.462

0.446 0.445 0.392 0.375 0.462 1.000

134
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Table 6.1. Results of the GEE analysis with different correlation structures

Correlation structure

Independent Exchangeable 5-Dependent Unstructured

X1 0.56 (0.78) 0.22 (0.76) 0.23 (0.76) 0.23 (0.76)

X2 0.47 (0.09) 0.34 (0.06) 0.33 (0.06) 0.32 (0.06)

X3 −0.13 (0.25) −0.15 (0.20) −0.13 (0.19) −0.11 (0.19)

X4 0.05 (0.40) 0.08 (0.37) 0.08 (0.37) 0.08 (0.37)

Time −0.11 (0.04) −0.08 (0.04) −0.07 (0.04) −0.08 (0.04)

The results presented in Output 6.8 also indicate that a GEE analysis re-
garding the longitudinal relationshipwith timehas the samedisadvantages as
have been mentioned for theMcNemar test and Cochran’sQ. So, on average
there is no change over time in the dichotomous outcome variable Ydich.
Comparable to the situation already described for continuous outcome

variables, GEE analysis requires the choice of a particular ‘working correla-
tion structure’. It has already been mentioned that for a dichotomous out-
comevariable it is not possible to base that choice on the correlation structure
of the observed data. It is therefore interesting to investigate the difference
in regression coefficients estimated when different correlation structures
are chosen. Output 6.9 shows the results of several analyses with different
correlation structures and Table 6.1 summarizes the results of the different
GEE analyses.
Themost important conclusion which can be drawn fromTable 6.1 is that

the results of the GEE analysis with different correlation structures are highly
comparable. This finding is different from that observed in the analysis of a
continuous outcome variable (see Table 4.2), for which a remarkable differ-
ence was found between the results of the analysis with different correlation
structures. So, (probably) the statement in the literature that GEE analysis
is robust against the wrong choice of a correlation structure is particularly
true for dichotomous outcome variables (see for instance also Liang and
Zeger, 1993).
Furthermore, from Table 6.1 it can be seen that there are remarkable dif-

ferences between the results obtained from the analysis with an independent
correlation structure and the results obtained from the analysis with the
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three dependent correlation structures. It should further be noted that the
standard errors obtained from the analysis with an independent correla-
tion structure are higher than those obtained from the analysis with a de-
pendent correlation structure. This ‘over-estimation’ is irrespective of the
nature of the particular predictor variable. Although the over-estimation
is more pronounced for the time-dependent predictor variables, it should
be noted that this differs from the situation with a continuous outcome
variable.
To put the results of the GEE analysis in a somewhat broader perspective,

they can be compared with the results of a ‘naive’ logistic regression analysis,
in which the dependency of observations is ignored. Output 6.10 presents
the results of such a ‘naive’ logistic regression analysis.

Output 6.10. Results of a ‘naive’ logistic regression analysis performed on the
example dataset, ignoring the dependency of the observations

Logistic Regression Analysis

Response: YDICH

Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -3.261 1.077 0.002

2 TIME -0.106 0.047 0.024 0.899 0.820 0.986

4 X1 0.557 0.434 0.199 1.745 0.746 4.083

5 X2 0.467 0.061 0.000 1.595 1.415 1.798

6 X3 -0.125 0.209 0.550 0.882 0.585 1.330

7 X4 0.046 0.191 0.811 1.047 0.719 1.523
----------------------------------------------------------------
df:876 Dev:1044.508 %(0):66.553 #iter:11 RSq: 0.071

The comparison between the results of the ‘naive’ logistic regression and
the results of the GEE analysis with an independent correlation structure
is different to what has been observed for continuous outcome variables.
The regression coefficients are exactly the same as the regression coefficients
obtained from a GEE analysis, while the standard errors obtained from the
GEE analysis are higher than those calculated with the ‘naive’ logistic regres-
sion analysis, irrespective of the nature of the predictor variables. The only
exception, however, is the standard error of time.
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6.2.4.2 Random coefficient analysis
Comparable to the situationwithcontinuousoutcomevariables, in thecaseof
dichotomous outcome variables it is also possible to analyse the relationship
with several predictor variables bymeans of random coefficient analysis. The
first step is to perform an analysis with only a random intercept. Output 6.11
shows the result of this analysis.

Output 6.11. Results of a random coefficient analysis with only a random intercept

Random-effects logit Number of obs = 882

Group variable (i) : id Number of groups = 147

Random effects u i ∼ Gaussian Obs per group: min = 6

avg = 6.0

max = 6

Wald chi2(5) = 30.39

Log likelihood = -400.59729 Prob > chi2 = 0.0000
--------------------------------------------------------------------------

ydich Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------

x1 0.8828525 1.81259 0.487 0.626 -2.669758 4.435463

x2 0.6991612 0.1442835 4.846 0.000 0.4163708 0.9819517

x3 -0.2489498 0.3615913 -0.688 0.491 -0.9576558 0.4597561

x4 0.3350076 0.713474 0.470 0.639 -1.063376 1.733391

time -0.1552925 0.0718681 -2.161 0.031 -0.2961514 -0.0144335

cons -5.772749 4.327476 -1.334 0.182 -14.25445 2.708948
--------------------------------------------------------------------------
/lnsig2u 1.813016 0.193079 9.390 0.000 1.434588 2.191444
--------------------------------------------------------------------------

sigma u 2.475662 0.2389992 2.048882 2.991341

rho 0.859726 0.0232848 0.8076152 0.8994785
--------------------------------------------------------------------------
Likelihood ratio test of rho=0: chi2(1) = 243.31 Prob > chi2 = 0.0000

The output of a random coefficient analysis with a dichotomous outcome
variable is comparable to the output observed for a continuous outcome
variable.
Thefirst part provides somegeneral informationabout themodel. It shows

that a logistic random coefficient analysis was performed (random-effects
logit) and that the random coefficients are normally distributed (random
effects u i ∼ Gaussian). Furthermore, the log likelihood of the model and
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the result of a Wald test (Wald chi2(5) = 30.39), and the corresponding
p-value (prob> chi2= 0.000) are presented. This Wald test is a generalized
Wald test for all predictor variables. Because X1, X2, X3, X4 and time are
analysed in themodel, the generalizedWald statistic follows aχ2 distribution
with five degrees of freedom, which is highly significant.
The second part of the output shows the most important information

obtained from the analysis, i.e. the (fixed) regression coefficients. This in-
formation is exactly the same as has been discussed for continuous out-
come variables, although the regression coefficients can be transformed into
odds ratios by taking exp(coef). Again the interpretation of the coefficients
is the same as has been discussed for the GEE analysis with dichotomous
outcome variables, i.e. a combined ‘between-subjects’ (cross-sectional) and
‘within-subject’ (longitudinal) interpretation. For instance, for predictor
variable X2 the ‘between-subjects’ interpretation is that a subject with a
one-unit higher score for predictor variable X2, compared to another sub-
ject, has an exp(0.699) = 2.01 times higher odds of being in the highest
group for the dichotomous outcome variable Ydich. The ‘within-subject’ in-
terpretation is that an increase of one unit in predictor variable X2 within
a subject (over a certain time period) is associated with a 2.01 times higher
odds of moving to the highest group of the dichotomous outcome variable
Ydich, compared to the situation in which no change occurs in predictor
variable X2.
The last part of the output shows information about the random part of

the analysis. The variance of the (normally distributed) random intercepts is
denoted as sigma u, and rho is an estimate of the within-subject correlation.
Although it is of little interest, the output of the random coefficient analysis
also shows the natural log of sigma u (lnsig2u).
The likelihood ratio test of rho = 0 provides information on the import-

ance of allowing a random intercept. The result of the likelihood ratio test
presented here is based on the comparison between this model and a sim-
ilar model without a random intercept. Apparently, this difference is 243.31,
which follows a χ2 distribution with one degree of freedom (i.e. the random
intercept), and which is highly significant. In other words, the results of the
likelihood ratio test suggest that it is necessary to allow a random intercept
in this particular situation.
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To verify the results of the likelihood ratio test, Output 6.12 presents the
results of an analysis with no random intercept.

Output 6.12. Results of a random coefficient analysis with no random intercept

Logit estimates Number of obs = 882

LR chi2(5) = 79.68

Prob > chi2 = 0.0000

Log likelihood = -522.25411 Pseudo R2 = 0.0709
--------------------------------------------------------------------------
ydich Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------

x1 1.745148 0.7570111 1.284 0.199 0.7457575 4.083823

x2 1.594749 0.0974273 7.639 0.000 1.414784 1.797606

x3 0.8824154 0.1847934 -0.597 0.550 0.585351 1.330239

x4 1.04677 0.2004081 0.239 0.811 0.7192596 1.523411

time 0.8990267 0.0423753 -2.258 0.024 0.8196936 0.9860379

For this particular purpose, the only important information is the log
likelihood of the model analysed (−522.25411). The difference between this
value and the log likelihood of amodelwith a random intercept is 121.65682.
The difference between the−2 log likelihoods is therefore 243.31, i.e. exactly
the same as has been seen in Output 6.11.
So, from comparison of the −2 log likelihoods of the two models it can

be concluded that allowing a random intercept is important. The next step
is to evaluate the necessity of a random slope with time. Therefore a random
coefficient analysis is performed,with both a random intercept and a random
slope with time (Output 6.13).
To evaluate the necessity of a random slope with time, the log likelihood

of the model presented in Output 6.13 (−397.84608) is compared to the
log likelihood of the model with only a random intercept (−400.59729,
Output 6.11). The difference between the two values is 2.75121. Two times
this difference follows a χ2 distribution with two degrees of freedom (i.e. the
random slope and the covariance/correlation between the random slope and
the random intercept), which gives a p-value of 0.064. This is not significant,
so following the basic rule of significance, allowing a random slope with
time is not really necessary. However, although the corresponding p-value
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is not significant, the difference in −2 log likelihood is substantial, so in this
situation it is recommended to use a model with both a random intercept
and a random slope with time.

Output 6.13. Results of a random coefficient analysis with a random intercept and a
random slope with time

log likelihood = -397.84608
--------------------------------------------------------------------------
ydich Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------

x1 0.3276885 1.633606 0.201 0.841 -2.874121 3.529498

x2 0.7158125 0.1373508 5.212 0.000 0.4466099 0.9850152

x3 -0.22697 0.3574447 -0.635 0.525 -0.9275488 0.4736088

x4 0.4606241 0.6981993 0.660 0.509 -0.9078214 1.82907

time -0.0685773 0.0952798 -0.720 0.472 -0.2553222 0.1181676

cons -5.304992 3.890947 -1.363 0.173 -12.93111 2.321123
--------------------------------------------------------------------------

Variances and covariances of random effects
--------------------------------------------------------------------------

***level 2 (id)

var(1): 13.116573 (4.3382583)

cov(1,2): -1.0355152 (0.61205904) cor(1,2): -0.8643663

var(2): 0.10942006 (0.09086733)

6.2.5 Comparison between GEE analysis and random coefficient analysis
For continuous outcome variables it was seen that GEE analysis and random
coefficientanalysisprovidedalmost identical results in theanalysisof a longit-
udinal dataset. For dichotomous outcome variables, however, the situation
is more complex. In Table 6.2 the results of the GEE analysis and the random
coefficient analysis with a dichotomous outcome variable are summarized.
From Table 6.2 it can be concluded that there are remarkable differences

between the results of the GEE analysis and the results of the random co-
efficient analysis. All regression coefficients and standard errors obtained
fromGEE analysis are much lower than those obtained from random coeffi-
cient analysis (except the regression coefficient for timewhen both a random
intercept and a random slope with time are considered).
In this respect, it is important to realize that the regression coefficients

calculated with GEE analysis are ‘population averaged’, i.e. the average of
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Table 6.2. Regression coefficients and standard errors (in parentheses) of
longitudinal regression analyses with a dichotomous outcome variable; a
comparison between GEE analysis and random coefficient analysis

Random coefficient Random coefficient

GEE analysisa analysisb analysisc

X1 0.22 (0.76) 0.88 (1.81) 0.33 (1.63)

X2 0.34 (0.06) 0.70 (0.14) 0.72 (0.14)

X3 −0.15 (0.20) −0.25 (0.36) −0.23 (0.36)

X4 0.08 (0.37) 0.34 (0.71) 0.46 (0.70)

Time −0.08 (0.04) −0.16 (0.07) −0.07 (0.10)

a GEE analysis with an exchangeable correlation structure.
b Random coefficient analysis with only a random intercept.
c Random coefficient analysis with a random intercept and a random slope with time.

the individual regression lines. The regression coefficients calculated with
random coefficient analysis can be seen as ‘subject specific’. In Figure 6.1,
this difference is illustrated for both the linear model (i.e. with a continuous
outcome variable) and the logistic model (i.e. with a dichotomous outcome
variable) with only a random intercept. For the linear longitudinal regres-
sion analysis, both GEE analysis and random coefficient analysis produce
exactly the same results, i.e. the ‘population-average’ is equal to the ‘subject-
specific’ (see also Section 4.7). For the logistic longitudinal regression ana-
lysis, however, the two approaches produce different results. This has to do
with the fact that in logistic regression analysis the intercept has a different
interpretation than in linear regression analysis. From Figure 6.1 it can be
seen that the regression coefficients calculated with a logistic GEE analysis
will always be lower than the coefficients calculated with a logistic random
coefficient analysis (see for instance also Neuhaus et al., 1991; Hu et al.,
1998). It should further be noted that when a random coefficient analysis
is performed with time as the only predictor variable, no significant change
over time is detected in outcome variable Ydich (results not shown in de-
tail). In other words, despite the fact that random coefficient analysis is a
‘subject-specific’ approach, the analysis of the development of a dichoto-
mous outcome variable over time has the same disadvantages as has been
mentioned for GEE analysis.
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Figure 6.1. Illustration of the ‘population average’ approach of GEE analysis and the ‘subject
specific’ approach of random coefficient analysis, illustrating both the situation
with a continuous outcome variable (upper graphs) and the situation with a
dichotomous outcome variable (lower graphs).

Because of the remarkable differences, the question then arises: ‘When a
dichotomous outcome variable is analysed in a longitudinal study, should
GEE analysis or random coefficient analysis be used?’ If one is performing a
population study and one is interested in the relationship between a dichoto-
mous outcome variable and several other predictor variables, GEE analysis
will probably provide themost ‘valid’ results. However, if one is interested in
the individual development over time of a dichotomous outcome variable,
random coefficient analysis will probably provide the most ‘valid’ results.
It should, however, also be noted that random coefficient analyses with a
dichotomous outcome variable have not yet been fully developed. Differ-
ent software packages give different results, and within one software package
there is (usually)more thanone algorithmto estimate the coefficients.Unfor-
tunately, these different estimation procedures often lead to different results
(see also Chapter 12). In other words, although in theory random coefficient
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Figure 6.2. Changes in a dichotomous variable between two time-points lead to a categorical
variable with four groups.

analysis is highly suitable in some situations, in practice one should be very
careful in using this technique in the longitudinal analysis of a dichotomous
outcome variable.

6.2.6 Alternative models
In Chapter 5 several alternative methods were introduced to analyse longit-
udinal relationships for continuous outcome variables (i.e. a time-lagmodel,
the modelling of changes, and an autoregressive model). In principle, all
the alternative models discussed for continuous outcome variables can also
be used for the analysis of dichotomous outcome variables. The time-lag
model can be used when one is interested in the analysis of possible causa-
tion, while an autoregressive model can be used when one is interested in
the analysis of the ‘longitudinal’ part of the relationship. However, a prob-
lem arises in the modelling of changes between subsequent measurements.
This has to do with the fact that changes in a dichotomous outcome variable
result in a categorical variable with four groups (i.e. subjects who stay in one
group, subjects who stay in another group and two groups in which subjects
move from one group to another (see Figure 6.2)), and with the fact that the
longitudinal analysis of categorical outcome variables is rather complicated
(see Chapter 7).
This chapter does not include a very detailed discussion of the results

of alternative models to analyse dichotomous outcome variables, because
this was already done in Chapter 5 with regard to continuous outcome
variables. Basically, the sameproblems and advantages apply to dichotomous
outcome variables. It is important to realize that the three models represent
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different aspects of the longitudinal relationships between a dichotomous
outcome variable and several predictor variables, and that therefore the
regression coefficients obtained from the different models should be in-
terpreted differently.

6.2.7 Comments
In this chapter, the longitudinal analysis of a dichotomous outcome variable
is explained in a rather simple way. It should be realized that the technical
details of these analyses are very complicated. For these technical details ref-
erence should be made to other publications (with regard to GEE analysis
for instance Liang and Zeger, 1986; Prentice, 1988; Lipsitz et al., 1991; Carey
et al., 1993; Diggle et al., 1994; Lipsitz et al., 1994b; Wiliamson et al., 1995;
Lipsitz and Fitzmaurice, 1996; and with regard to random coefficient ana-
lysis for instance Conway, 1990; Goldstein, 1995; Rodriguez and Goldman,
1995; Goldstein and Rasbash, 1996; Gibbons and Hedeker, 1997; Barbosa
and Goldstein, 2000; Yang and Goldstein, 2000; Rodriguez and Goldman,
2001).
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Categorical and ‘count’ outcome variables

7.1 Categorical outcome variables

7.1.1 Two measurements
Longitudinal analysis with a categorical outcome variable is more problem-
atic than the longitudinal analysis of continuous or dichotomous outcome
variables. Until recently only simple methods were available to analyse such
outcome variables. Therefore, categorical variables are sometimes treated as
continuous, especially when they are ordinal and have a sufficient number
(usually five or more) of categories. Another method is to reduce the cate-
gorical outcome variable into a dichotomous one by combining two ormore
categories. However, this results in a loss of information, and is only recom-
mended when there are only a few subjects in one or more categories of the
categorical variable.
The simplest form of longitudinal study with a categorical outcome

variable is one where the categorical outcome variable is measured twice
in time.This situation (when the categorical variable consists of three groups)
is illustrated in the 3 × 3 table presented below (where n stands for
number of subjects andp stands for proportion of the total number of sub-
jects N).

t2

1 2 3 Total

t1 1 n11(p11) n12(p12) n13(p13) n1(t1)(p1(t1))

2 n21(p21) n22(p22) n13(p13) n2(t1)(p2(t1))

3 n31(p31) n32(p32) n33(p33) n3(t1)(p3(t1))

Total n1(t2)(p1(t2)) n2(t2)(p2(t2)) n3(t2)(p3(t2)) N(1)

145
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To determine whether there is a development or change over time in the
categorical outcome variable Ycat, an extension of the McNemar test (which
has beendiscussed for dichotomousoutcomevariables, see Section6.1.1) can
be used. This extension is known as the Stuart–Maxwell statistic, and is only
suitable for outcome variables with three categories. The Stuart–Maxwell
statistic follows a χ2 distribution with one degree of freedom, and is defined
as shown in Equation (7.1).

χ2 = n23d21 + n13d22 + n12d23
2(n12 n13 + n12 n23 + n13 n23)

(7.1a)

nij = nij + nji

2
(7.1b)

di = nit1 − nit2 (7.1c)

where ni j is the number of subjects in group i at t = 1 and in group j at
t = 2, and n j i is the number of subjects in group j at t = 1 and in group i at
t = 2.
Just as the McNemar test, the Stuart–Maxwell statistic gives an indication

of the differences between the changes over time in opposite directions,
while the main interest is usually the total change over time. Therefore,
the ‘proportion of change’ can be calculated. This ‘proportion of change’
is a summation of all the off-diagonal proportions of the categorical 3 × 3
table,which is equal to 1 − (p11 + p22 + p33). Around this proportion a 95%
confidence interval can be calculated in the usual way (for calculation of the
standard error of the ‘proportion of change’, Equation (6.3) can be used). In
addition to giving an indication of the precision of the ‘proportion of change’,
this 95% confidence interval provides an answer to the question of whether
there is a significant change over time. As for the dichotomous outcome
variables, this procedure can be carried out for the proportion of subjects
that ‘increases’ over time or the proportion of subjects that ‘decreases’ over
time. It is obvious that the calculation of the ‘proportion of change’ is not
limited to categorical variables with only three measurements.

7.1.2 More than two measurements
When there are more than two measurements in a longitudinal study, the
same procedure can be followed as has been described for dichotomous
outcome variables, i.e. the ‘proportion of change’ can be used as a measure
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of total change over time. Todo so, (T − 1) r × c tables1 must be constructed
(for t = 1 and t = 2, for t = 2 and t = 3, and so on), then for each table the
‘proportion of change’ can be calculated. To obtain the total ‘proportion of
change’, Equation (7.2) can be applied:

p̄ = 1

N(T − 1)

N∑

i=1

ci (7.2)

where p̄ is the overall ‘proportion of change’, N is the number of subjects,
T is the number of measurements, and ci is the number of changes for
individual i .

7.1.3 Comparing groups
In research situations in which the longitudinal development over time
between several groups must be compared, the simple methods discussed
for dichotomous outcome variables can also be used for categorical out-
come variables, i.e. comparing the ‘proportion of change’ between different
groups, or comparing the ‘proportion of change’ in a certain direction be-
tween different groups. When there are only two groups to compare, a 95%
confidence interval can be constructed around the difference in proportions,
so that this difference canbe tested for significance.This shouldbedone in ex-
actly the sameway as has been described for dichotomous outcome variables
(see Section 6.1.3).

7.1.4 Example
For the example, the original continuous outcome variable Y of the example
dataset was divided into three equal groups, according to the 33rd and the
66th percentile, in order to create Ycat. This was done at each of the six meas-
urements (see also Section 1.4). Most of the statistical methods are suitable
for situations in which there are only two measurements, and therefore the
development between the first and the last repeated measurement (between
t = 1 and t = 6) for the categorical outcome variable Ycat will be consid-
ered first. In Output 7.1 the 3 × 3 table for Ycat at t = 1 and Ycat at t = 6 is
presented. From Output 7.1 the Stuart–Maxwell statistic and the ‘propor-
tion of change’ can be calculated. Unfortunately, the two indicators are not

1 r × c stands for row × column, and indicates that all types of categorical variables can be analysed in
this way.
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Output 7.1. 3 x 3 table for the relationship between
outcome variable Ycat at t = 1 and Ycat at t = 6

YCATT6

Count

Row

1 2 3 Total

YCATT1

1 30 15 3 48

32.7

2 16 19 14 49

33.3

3 3 15 32 50

34.0

Column 49 49 49 147

Total 33.3 33.3 33.3 100.0

Table 7.1. Two indicators for a change over time (between t = 1 and
t = 6) for outcome variable Ycat

Stuart–Maxwell statistic χ2 = 0.09 p = 0.76

‘proportion of change’ 0.45 95% confidence interval 0.37–0.53

available in standard software packages, so theymust be calculatedmanually.
Table 7.1 shows the values of both indicators for a change over time.
With the Stuart–Maxwell statistic, the difference between the changes over

time in opposite directions is tested for significance. Because the categoriza-
tion of the outcome variable Ycat was based on tertiles (i.e. fixed values), it is
obvious that the Stuart–Maxwell statistic will be very low (χ2 = 0.09), and
far from significant (p = 0.76). The ‘proportion of change’ is an indicator
of the total change over time. The result indicates a ‘moderate’ and highly
significant individual change over time.
When all the measurements are included in the analysis, the only possible

way to investigate the individual change over time in a categorical outcome
variable is to calculate the overall ‘proportion of change’. To do so, all five
3 × 3 tables must be constructed. They are shown in Output 7.2. From
the five 3 × 3 tables the total ‘proportion of change’ can be calculated (with
Equation (7.2)). This proportion is equal to 0.35. The corresponding
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Output 7.2. Five 3 x 3 tables to analyse the change over time in the outcome
variable Ycat between t = 1 and t = 6

YCATT2 YCATT3

Count Count

1 2 3 1 2 3

YCATT1 YCATT2

1 35 11 2 1 34 11 1

2 8 29 12 2 18 20 15

3 3 13 34 3 2 11 35

YCATT4 YCATT5

Count Count

1 2 3 1 2 3

YCATT3 YCATT4

1 45 9 1 36 16

2 7 23 12 2 10 24 12

3 14 37 3 3 10 36

YCATT6

Count

YCATT5 1 2 3

1 35 13 1

2 12 22 16

3 2 14 32

95% confidence interval (based on the standard error calculated with
Equation (6.3)) is equal to [0.32 to 0.38], i.e. a highly significant change
over time.
It is also possible to compare the development over time for outcome

variableYcat between twoormore groups. In the example, thedevelopmentof
Ycat was comparedbetween the two categories of time-independent predictor
variable X4 (i.e. gender). Output 7.3 shows the two 3 × 3 tables. For both
groups the ‘proportion of change’ is exactly the same, i.e. 0.45. Around this
(no) difference a 95% confidence interval can be constructed: [−0.16 to
0.16]. The width of the confidence interval provides information about the
precision of the calculated difference between the two groups.
To obtain an estimation of the possible differences in development over

time for the twogroupsbyusing all sixmeasurements, theoverall ‘proportion
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Output 7.3. 3 x 3 tables for the relationship between outcome
variable Ycat at t1 and Ycat at t6 for the group in which X4 equals 1
and for the group in which X4 equals 2

X4 equals 1

YCATT1 OUTCOME VARIABLE Y AT T1 (3 GROUPS)

by YCATT6 OUTCOME VARIABLE Y AT T6 (3 GROUPS)

YCATT6

Count

Row

1 2 3 Total

YCATT1

1 14 7 21

30.4

2 11 8 5 24

34.8

3 3 5 16 24

34.8

Column 28 20 21 69

Total 40.6 29.0 30.4 100.0

X4 equals 2

YCATT1 OUTCOME VARIABLE Y AT T1 (3 GROUPS)

by YCATT6 OUTCOME VARIABLE Y AT T6 (3 GROUPS)

YCATT6

Count

Row

1 2 3 Total

YCATT1

1 16 8 3 27

34.6

2 5 11 9 25

32.1

3 10 16 26

32.3

Column 21 29 28 78

Total 26.9 37.2 35.9 100.0

of change’must be calculated for both groups.When this is done (by creating
(T − 1), 3 × 3 tables for both groups), the overall ‘proportion of change’
for the group X4 equals 1 is 0.47, while for group X4 equals 2, the overall
proportion of change is 0.44. Around this difference of 3% a 95% confidence
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interval can be calculated. To obtain a standard error for this difference,
Equation (6.5) can be applied to these data, which results in a confidence
interval of [−0.05 to 0.11], i.e. no significant difference between the two
groups.

7.1.5 Relationships with other variables
7.1.5.1 ‘Traditional’ methods

With the (simple) methods described in the foregoing sections, it was pos-
sible to answer the question of whether there is a change/development over
time in a certain categorical outcome variable and/or the question ofwhether
there is a difference in change/development between two or more groups.
Both questions can also be answered by using more complicated methods,
which must be applied in any situation other than that described above: for
instance, to answer the question of whether there is a relationship between
the development of a categorical outcome variable Ycat and one or more pre-
dictor variables X . For categorical outcome variables, a comparable ‘cross-
sectional’ procedure is available, as has alreadybeendescribed for continuous
anddichotomous outcome variables, i.e. ‘long-term exposure’ to certain pre-
dictor variables is related to the categorical outcome variable at the end of
the follow-up period (see Figure 4.2). This analysis can be performed with
polytomous logistic regression analysis, which is also known as multinomial
logistic regression analysis, and is the categorical extension of logistic regres-
sion analysis.

7.1.5.2 Example
Output 7.4 presents the results of the polytomous logistic regression analysis,
in which ‘long-term exposures’ to the predictor variables X1 to X4 between
t = 1 and t = 6 (using all available data) were related to the categorical
outcome variable Ycat at t = 6.
With polytomous logistic regression analysis, basically two logistic re-

gression analyses are combined into one analysis, although the procedure
is slightly different from performing two separate independent logistic
regression analyses. In the polytomous logistic regression analysis, the upper
tertile of the outcome variable Ycat is used as a reference category. The in-
terpretation of the regression coefficients is exactly the same as for (simple)
logistic regression analysis. FromOutput 7.4 it can be seen that, for instance,
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Output 7.4. Results of a polytomous logistic regression analysis relating ‘long-term
exposures’ to predictor variables X1 to X4 between t = 1 and t = 6 (using all available
data) to the categorical outcome variable Ycat at t = 6

B Std. error Wald df Sig

----------------------------------------------------------------------

1 Constant 6.416 2.959 4.702 1 0.030

X1 -1.213 1.299 0.872 1 0.350

AveragX2 -1.036 0.257 16.191 1 0.000

AveragX3 -0.177 0.455 0.151 1 0.697

X4 0.527 0.580 0.824 1 0.364

----------------------------------------------------------------------

2 Constant 6.695 2.852 5.511 1 0.019

X1 -1.665 1.261 1.743 1 0.187

AveragX2 -0.741 0.225 10.804 1 0.001

AveragX3 0.359 0.435 1.623 1 0.203

X4 0.714 0.560 1.623 1 0.203

----------------------------------------------------------------------

Dependent variable: CATEGORICAL OUTCOME VARIABLE Y AT T6 (3 GROUPS)

‘long-term exposure’ to X2 is significantly associated with the first group as
well as the second groupof the categorical outcome variableYcat at t = 6. The
odds ratios for both groups can be obtained from the regression coefficients,
i.e. the odds ratio is exp(regression coefficient) and the corresponding 95%
confidence interval is exp(regression coefficient ± 1.96 times the standard
error of the regression coefficient). The interpretation of the odds ratio is
straightforward: a one-point difference in the ‘long-term exposure’ to X2

between subjects is associated with a 0.35 (i.e. exp(−1.036)) ‘higher’ odds of
being in the lowest tertile of the outcome variable Ycat at t = 6, compared to
the odds of being in the highest tertile, and a 0.48 (i.e. exp(−0.741)) ‘higher’
odds of being in the second tertile, compared to the odds of being in the
highest tertile. The corresponding 95% confidence intervals are [0.21–0.59]
and [0.31–0.74] respectively.

7.1.5.3 Sophisticated methods
In Chapters 4 and 6, it was argued that longitudinal data analysis with a
continuous outcome variable is a longitudinal extension of linear regression
analysis, and that longitudinal data analysis with a dichotomous outcome
variable is a longitudinal extension of logistic regression analysis, i.e. both
take into account the fact that the repeatedmeasurements within one subject
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are correlated. Analogous to this, it is obvious that longitudinal data analysis
with a categorical outcomevariable is a longitudinal extensionofpolytomous
logistic regression analysis. Polytomous logistic regression for longitudinal
data analysis was first described forGEE analysis (see for instance Liang et al.,
1992; Miller et al., 1993; Lipsitz et al., 1994b). Surprisingly this polytomous
logistic GEE approach is still not yet available in standard software packages,
and will therefore not be discussed in detail. The general idea of this GEE
approach is the same as all other GEE approaches, i.e. a correction for the
dependency of observations is performed by assuming a certain ‘working
correlation structure’.
In recent years, a polytomous logistic random coefficient analysis has also

beendescribed (Agresti et al., 2000;Rabe-Heskethet al., 2001a;Rabe-Hesketh
and Skondral, 2001). As with all other random coefficient analyses described
earlier, with this newly developedmethod all questions can be answered that
were answered by the earlier mentioned simple methods. Moreover, it can
also be used to analyse the longitudinal relationship between a categorical
outcome variable and one or more predictor variables. The underlying pro-
cedures and the interpretation of the regression coefficients are comparable
to what has been described for logistic random coefficient analysis.

7.1.5.4 Example
The first step in the analysis to answer the question whether there is a rela-
tionship between the categorical outcome variableYcat and the four predictor
variables (X1 to X4) and time is to perform a random coefficient analysis
with only a random intercept. Output 7.5 shows the results of this analysis.
The structure of Output 7.5 is comparable to what has been seen for

continuous and dichotomous outcome variables. First the log likelihood of
the model analysed is presented (−784.6426), which is only interesting in
comparison to the log likelihood value of another model, which must be
an extension of the presented model. In the next part of the output, the
regression coefficients and standard errors are given as well as the z-value
(the regression coefficient divided by its standard error), the corresponding
p-value and the 95%confidence intervals of the regression coefficients. In the
example dataset, Ycat is a categorical outcome variable with three categories
(i.e. tertiles), so there are two ‘tables’ with regression coefficients. In the first
‘table’ the second tertile of Ycat is compared to the lowest tertile of Ycat (which
is the reference category), while in the second ‘table’ the highest tertile of Ycat
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Output 7.5. Result of a random coefficient analysis with a categorical outcome variable
and only a random intercept

log likelihood = -784.6426
--------------------------------------------------------------------------

ycat Coeff Std. Err. z P > |z| [95% Conf. Interval]

--------------------------------------------------------------------------

c2

x1 -0.8562861 1.513829 -0.566 0.572 -3.823336 2.110764

x2 0.6193215 0.1712165 3.617 0.000 0.2837433 0.9548997

x3 -0.0428614 0.3847279 -0.111 0.911 -0.7969143 0.7111915

x4 0.1630424 0.6576949 0.248 0.804 -1.126016 1.452101

time -0.1380476 0.0753289 -1.833 0.067 -0.2856894 0.0095943

cons 0.4352662 3.829679 0.114 0.910 -7.070767 7.941299

--------------------------------------------------------------------------

c3

x1 0.0196611 1.520852 0.013 0.990 -2.961154 3.000476

x2 0.9471408 0.1703437 5.560 0.000 0.6132733 1.281008

x3 -0.3353352 0.3953064 -0.848 0.396 -1.110122 0.439451

x4 0.281329 0.6609212 0.426 0.670 -1.014053 1.576711

time -0.2002512 0.0769589 -2.602 0.009 -0.3510879 -0.0494144

cons -2.485896 3.846796 -0.646 0.518 -10.02548 5.053685

--------------------------------------------------------------------------

Variances and covariances of random effects

--------------------------------------------------------------------------

***level 2 (id)

var(1): 7.5624431 (1.6150762)

is compared to the lowest tertile. The interpretation of the regression coeffi-
cients is rather complicated. FromOutput 7.5 it can be seen that for instance
X2 is significantly related to the outcome variable Ycat. For the comparison
between the second tertile and the reference category (i.e. the lowest tertile)
the regression coefficient (0.6193215) can be transformed into an odds ratio
(i.e. exp(0.6193215) = 1.86). As for all other longitudinal regression coeffi-
cients thisodds ratiohasa ‘combined’ interpretation. (1)The ‘cross-sectional’
or ‘between-subjects’ interpretation: a subject with a one-unit higher score
for predictor variable X2, compared to another subject, has a 1.86 times
higher odds of being in the second tertile compared to the odds of being in
the lowest tertile. (2) The ‘longitudinal’ or ‘within-subject’ interpretation:
an increase of one unit in predictor variable X2 within a subject (over a
certain time period) is associated with a 1.86 times higher odds of moving
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from the lowest tertile to the second tertile of the categorical outcome vari-
able Ycat, compared to the situation in which no change occurs in predictor
variable X2. The regression coefficient of X2 belonging to the comparisonbe-
tween the highest tertile and the lowest tertile (exp(0.9471408) = 2.58) can
be interpreted in the same way. (1) A subject with a one-unit higher score for
predictor variable X2, compared to another subject, has a 2.58 times higher
odds of being in the highest tertile for the categorical outcome variable Ycat
compared to the odds of being in the lowest tertile. (2) The ‘longitudinal’
or ‘within-subject’ interpretation: an increase of one unit in predictor vari-
able X2 within a subject (over a certain time period) is associated with a
2.58 times higher odds ofmoving from the lowest tertile to the highest tertile
of the categorical outcome variable Ycat, compared to the situation in which
no change occurs in predictor variable X2. The magnitude of the regression
coefficient (i.e. the magnitude of the odds ratio) reflects both relationships,
and it is not clear from the results of this analysis, which is the most impor-
tant component of the relationship. However, the relative contribution of
both parts highly depends on the proportion of subjects whomove from one
category to another. In the example dataset for instance, the proportion of
subjects who move from the lowest to the highest category is rather low, so
for the comparison between the lowest and the highest tertile, the estimated
odds ratio of 2.58 mainly reflects the ‘between-subjects’ relationship. As for
all other longitudinal data analyses, alternative models are available (e.g. an
autoregressive model, see Section 5.2.3) in which the ‘between-subjects’ and
‘within-subject’ relationships can be more or less separated.
In the last part of Output 7.5 the (normally distributed) random variation

in intercept (7.5624431) with the corresponding standard error (1.6150762)
is provided. Although the variation in intercepts between subjects is rather
high compared to the standard error, basically the necessity of a random
intercept has to be evaluated with the likelihood ratio test. The−2 log likeli-
hood of amodel with no random intercept appeared to be 1825.1 (results not
shown in detail). The difference between the −2 log likelihoods is therefore
255.8, i.e. as expected highly significant. So, a random intercept is necessary
in this particular situation.
The next step in the analysis is to add a random slope with time to the

model.Output 7.6 shows the results of this randomcoefficient analysis. From
Output 7.6, it can be seen that the log likelihood of a model with both a ran-
dom intercept and a random slope with time is decreased (i.e.−774.78094).
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Output 7.6. Result of a random coefficient analysis with a categorical outcome variable
and both a random intercept and a random slope with time

log likelihood = -774.78094
------------------------------------------------------------------------

ycat Coeff Std. Err. z P > |z| [95% Conf. Interval]
------------------------------------------------------------------------
c2

x1 -1.355226 1.601634 -0.846 0.397 -4.494371 1.783918

x2 0.686692 0.1835857 3.740 0.000 0.3268706 1.046513

x3 0.1369879 0.4222135 0.324 0.746 -0.6905353 0.9645111

x4 0.4695151 0.8257442 0.569 0.570 -1.148914 2.087944

time -0.2982958 0.1261828 -2.364 0.018 -0.5456096 -0.050982

cons 1.529132 4.094066 0.373 0.709 -6.495091 9.553355

------------------------------------------------------------------------
c3

x1 -0.4861587 1.606773 -0.303 0.762 -3.635377 2.663059

x2 1.013631 0.1828736 5.543 0.000 0.655205 1.372056

x3 -0.1561199 0.4317889 -0.362 0.718 -1.002411 0.6901707

x4 0.5955992 0.8259557 0.721 0.471 -1.023244 2.214443

time -0.3646409 0.1269982 -2.871 0.004 -0.6135529 -0.115729

cons -1.372806 4.102624 -0.335 0.738 -9.413802 6.66819

------------------------------------------------------------------------

Variances and covariances of random effects

------------------------------------------------------------------------

***level 2 (id)

var(1): 27.089896 (8.6944303)

cov(1,2): -2.9612643 (1.2660617) cor(1,2): -0.85743581

var(2): 0.44029501 (0.18979326)

With this value and the log likelihood value of a model with only a random
intercept, the necessity of a random slope with time can be evaluated. The
difference between the−2 log likelihoods of the bothmodels is 19.72, which
follows a χ2 distribution with two degrees of freedom, i.e. highly significant.
In other words, both a random intercept and a random slope with timemust
be considered.

7.2 ‘Count’ outcome variables

A special type of categorical outcome variable is a so-called ‘count’ outcome
variable (e.g. the number of asthma attacks in one year, the incidence rate of a
specific disease, etc.). Because of the discrete and non-negative nature of the
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‘count’ outcome variables, they are assumed to follow a Poisson distribution.
Longitudinal analysis with ‘count’ outcome variables is therefore compar-
able to a (simple) Poisson regression analysis, the difference being that the
longitudinal technique takes into account the within-subject correlations. It
should further be noted that the longitudinal Poisson regression analysis is
sometimes referred to as longitudinal log-linear regression analysis.
As for the longitudinal linear regression analysis, the longitudinal logistic

regression analysis, and the longitudinal polytomous logistic regression ana-
lysis, the longitudinalPoissonregressionanalysis is, in fact,nothingmore than
an extension of the simple Poisson regression analysis; an extension which
allows a within-subject correlation between the repeated measurements.
With this analysis the development of the ‘count’ outcome variable can be
related to several predictor variables, several time-dependent covariates, sev-
eral time-independent covariates and time. As in (simple) cross-sectional
Poisson regression analysis, all predictor variables and covariates can be con-
tinuous,dichotomousor categorical, althoughof course in the latter situation
dummy coding can or must be used. As in (simple) cross-sectional Poisson
regression analysis, the regression coefficient can be transformed into a rate
ratio (exp(regression coefficient)). For estimation of the regression coeffi-
cients (i.e. rate ratios) the same sophisticated methods can be used as were
discussedbefore, i.e.GEEanalysis and randomcoefficient analysis.WithGEE
analysis, a correction for thewithin-subject correlations ismade by assuming
a ‘working correlation structure’, while with random coefficient analysis the
different regression coefficients are allowed to vary between individuals (for
technical details see for instance Diggle et al., 1994; Goldstein, 1995).

7.2.1 Example
7.2.1.1 Introduction

The example chosen to illustrate the analysis of a ‘count’ outcome variable is
taken from the same longitudinal study which was used to illustrate most of
the other techniques, i.e. the Amsterdam Growth and Health Longitudinal
Study (Kemper, 1995). One of the aims of the presented study was to invest-
igate the possible clustering of risk factors for coronary heart disease (CHD)
and the longitudinal relationship with several ‘lifestyle’ predictor variables.
To construct a measure of clustering, at each of the six measurements ‘high
risk’ quartiles were formed for each of the following biological risk factors:
(1) the ratio between total serum cholesterol and high density lipoprotein
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Table 7.2. Number of subjects with a particular cluster score
(i.e. the number of CHD risk factors) measured at
six measurements

Number of CHD risk factors

Time-point 0 1 2 3 4

1 65 49 25 4 4

2 60 44 33 9 1

3 47 64 26 9 1

4 54 53 29 9 2

5 56 53 26 11 1

6 55 46 33 13 0

cholesterol, (2) diastolic bloodpressure, (3) the sumof skinfolds, and (4) car-
diopulmonary fitness. At each of the repeated measurements, clustering was
defined as the number of biological risk factors that occurred in a particular
subject. So, if a subject belonged to the ‘high risk’ quartile for all biologi-
cal risk factors, the clustering score at that particular measurement was 4,
if the subject belonged to three ‘high risk’ groups, the clustering score
was 3, etc. This cluster score is a ‘count’ outcome variable, and this outcome
variable Ycount is related to four predictor variables: (1) the baseline Keys
score (a time-independent continuous variable), which is an indicator of the
amountofunfavourable fatty acids andcholesterol in thediet, (2) the amount
of physical activity (a time-dependent continuous variable), (3) smoking
behaviour (a time-dependentdichotomousvariable), and (4) gender (a time-
independent dichotomous variable) (Twisk et al., 2001). In Tables 7.2 and 7.3
descriptive information about the example dataset is shown.
Again, the aimof this studywas to investigate the longitudinal relationship

between the four predictor variables and the clustering of CHD risk factors.
In the example, both GEE analysis and random coefficient analysis will be
used to investigate the longitudinal relationships.

7.2.1.2 GEE analysis
With ‘count’ outcome variables, theGEE approach also requires the choice of
a working correlation structure. In principle, there are the same possibilities
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Table 7.3. Descriptive informationa about the predictor variables in the
dataset with a ‘count’ outcome variable

Time-point Keys score Activity Smoking Gender

1 52.0 (7.9) 4.35 (1.9) 4/143 69/78

2 52.0 (7.9) 3.90 (1.6) 11/136 69/78

3 52.0 (7.9) 3.62 (1.7) 22/125 69/78

4 52.0 (7.9) 3.52 (1.8) 28/119 69/78

5 52.0 (7.9) 3.37 (2.1) 48/99 69/78

6 52.0 (7.9) 3.02 (2.1) 40/107 69/78

a For the Keys score and activity, mean and standard deviation are given; for smoking,

the number of smokers/non-smokers is given; for gender, the number of males/females

is given.

as have been discussed for continuous outcome variables (see Section 4.5.2).
However, as for the dichotomous outcome variable, it can be problematic
to use the correlation structure of the observed data as guidance for the
choice of a working correlation structure. In this example, an exchangeable
correlation structure will first be used.
Output 7.7presents the results of theGEEanalysis relating the longitudinal

development of the outcome variable Ycount to the development of the four
predictor variables. From the first line of Output 7.7 it can be seen that
a ‘Poisson’ GEE analysis was performed, and from the second line of the

Output 7.7. Results of a GEE analysis with a ‘count’ outcome variable

Poisson Generalized Estimating Equations

Response: YCOUNT Corr: Exchangeable

Column Name Coeff StErr p-value IDR 95% CI
----------------------------------------------------------------

0 Constant 0.137 0.481 0.776

2 TIME 0.004 0.021 0.856 1.004 0.963 1.046

4 KEYS 0.002 0.008 0.806 1.002 0.987 1.017

5 ACTIVITY -0.084 0.021 0.000 0.920 0.882 0.959

6 SMOKING 0.018 0.076 0.812 1.018 0.877 1.182

7 GENDER 0.004 0.116 0.976 1.004 0.800 1.260
----------------------------------------------------------------
n:147 s:0.966 #iter:12

Estimate of common correlation 0.439



Output 7.8. Results of GEE analyses with a ‘count’ outcome variable with an independent
correlation structure (A), an 5-dependent correlation structure (B), and an unstructured
correlation structure (C)

(A) Poisson Generalized Estimating Equations

Response: YCOUNT Corr: Independence

Column Name Coeff StErr p-value IDR 95% CI

------------------------------------------------------------------------------

0 Constant 0.218 0.494 0.660

2 TIME -0.009 0.022 0.695 0.991 0.950 1.035

4 KEYS 0.002 0.008 0.776 1.002 0.987 1.018

5 ACTIVITY -0.099 0.025 0.000 0.906 0.862 0.951

6 SMOKING 0.138 0.103 0.181 1.148 0.938 1.404

7 GENDER -0.011 0.119 0.924 0.989 0.783 1.248

------------------------------------------------------------------------------

n:147 s:0.966 #iter:11

(B) Poisson Generalized Estimating Equations

Response: YCOUNT Corr: 5-Dependence

Column Name Coeff StErr p-value IDR 95% CI

------------------------------------------------------------------------------

0 Constant 0.123 0.487 0.801

2 TIME 0.004 0.021 0.859 1.004 0.964 1.045

4 KEYS 0.002 0.008 0.792 1.002 0.987 1.018

5 ACTIVITY -0.083 0.019 0.000 0.921 0.887 0.956

6 SMOKING 0.040 0.072 0.584 1.040 0.903 1.198

7 GENDER -0.001 0.117 0.996 0.999 0.795 1.257

------------------------------------------------------------------------------

n:147 s:0.967 #iter:12

Estimate of common correlations 0.543, 0.451, 0.427, 0.383, 0.279

(C) Poisson Generalized Estimating Equations

Response: YCOUNT Corr: Unspecified

Column Name Coeff StErr p-value IDR 95% CI

------------------------------------------------------------------------------

0 Constant 0.132 0.481 0.783

2 TIME 0.009 0.020 0.660 1.009 0.970 1.049

4 KEYS 0.002 0.008 0.843 1.002 0.987 1.017

5 ACTIVITY -0.077 0.019 0.000 0.926 0.893 0.960

6 SMOKING 0.018 0.072 0.806 1.018 0.883 1.173

7 GENDER -0.010 0.116 0.929 0.990 0.789 1.242

------------------------------------------------------------------------------

n:147 s:0.968 #iter:12

Estimate of common correlation

1.000 0.587 0.536 0.483 0.362 0.257

0.587 1.000 0.537 0.554 0.455 0.352

0.536 0.537 1.000 0.562 0.418 0.300

0.483 0.554 0.562 1.000 0.429 0.280

0.362 0.455 0.418 0.429 1.000 0.550

0.257 0.352 0.300 0.280 0.550 1.000
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Table 7.4. Results of GEE analyses with a ‘count’ outcome variable with
different correlation structures

Correlation structure

Independent Exchangeable 5-Dependent Unstructured

Keys score 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

Activity −0.10 (0.03) −0.08 (0.02) −0.08 (0.02) −0.08 (0.02)

Smoking 0.14 (0.10) 0.02 (0.08) 0.04 (0.07) 0.02 (0.07)

Gender −0.01 (0.12) 0.00 (0.12) 0.00 (0.12) −0.01 (0.12)

Time −0.01 (0.02) 0.00 (0.02) 0.00 (0.02) 0.01 (0.02)

(2) a change of one unit in physical activity within a subject (over a certain
time period) is associated with a decrease of 9% in the number of CHD risk
factors (i.e the ‘within-subject’ interpretation).
As has been mentioned for the linear and the logistic GEE analysis, an

alternative model (i.e. an autoregressive model) can be used to obtain an
estimate for the ‘within-subject’ relationship. The procedures are the same
as those described in Chapter 5, so this will not be further discussed.
To investigate the influence of using a different correlation structure, the

data were re-analysed with an independent, a 5-dependent, and an unstruc-
tured correlation structure. The results are presented in Output 7.8, and in
Table 7.4 the results of the Poisson GEE analyses with different correlation
structures are summarized.
From Table 7.4 it can be seen that the differences between the results are

only marginal. In fact, the results obtained from the GEE analysis with the
three dependent (i.e. exchangeable, 5-depenendent and unstructured) cor-
relation structures are almost the same. This was also observed for the GEE
analysiswith a dichotomous outcomevariable. In otherwords, for the longit-
udinal analysis of a ‘count’ outcome variable, GEE analysis also seems to be
quite robust against a ‘wrong’ choice of a ‘working correlation structure’. For
the analysis with an independent correlation structure, the regression coef-
ficients are slightly different than for the analysis with the three dependent
correlation structures, and the standard errors are slightly higher for all pre-
dictor variables. For the time-dependent predictor variables this difference
was, however, more pronounced than for the time-independent predictor
variables. This is exactly the same as has been observed for dichotomous
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outcome variables (see Section 6.2.4.1), but differs from the GEE analysis
with continuous outcome variables (see Section 4.5.4.3).

7.2.1.3 Random coefficient analysis
The first random coefficient analysis performed on this dataset is an analysis
with only a random intercept. Output 7.9 shows the result of this random
coefficient analysis. The output of the random coefficient analysis looks the
same as the output that has been discussed earlier for continuous outcome

Output 7.9. Results of a random coefficient analysis with a ‘count’ outcome variable and
only a random intercept

Random-effects Poisson Number of obs = 882

Group variable (i) : id Number of groups = 147

Random effects u i ∼ Gaussian Obs per group: min = 6

avg = 6.0

max = 6

LR chi2(5) = 15.80

Log likelihood = -1051.444 Prob > chi2 = 0.0074

--------------------------------------------------------------------------

YCOUNT Coeff Std. Err. z P > |z| [95% Conf. Interval]

--------------------------------------------------------------------------

KEYS 0.0037919 0.0081538 0.465 0.642 -0.0121892 0.0197731

ACTIVITY -0.0885626 0.0242515 -3.652 0.000 -0.1360946 -0.0410306

SMOKING 0.0398486 0.1112441 0.358 0.720 -0.1781858 0.257883

GENDER -0.0312362 0.1298678 -0.241 0.810 -0.2857725 0.2233

TIME 0.0021113 0.0218432 0.097 0.923 -0.0407005 0.0449231

cons -0.0706359 0.5193567 -0.136 0.892 -1.088556 0.9472846

--------------------------------------------------------------------------

/lnsig2u -0.9209769 0.215503 -4.274 0.000 -1.343355 -0.4985988

--------------------------------------------------------------------------

sigma u 0.6309754 0.0679886 0.5108509 0.7793466

rho 0.2847589 0.0438918 0.2069589 0.37787

--------------------------------------------------------------------------

Likelihood ratio test of rho=0: chi2(1) = 124.50 Prob > chi2 = 0.0000

variables anddichotomous outcome variables. Thefirst part contains general
information about the model. It shows that a Poisson random coefficient
analysis was performed (Random-effects Poisson) and that the random
coefficients are normally distributed (Random effects u i ∼ Gaussian). It
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also shows the log likelihood of the model and the result of a likelihood
ratio test (LR chi2(5) = 15.80). This likelihood ratio test is related to the
comparison between this model and a model with a random intercept but
without predictor variables. Because five predictor variables are analysed
(time, Keys score, activity, smoking and gender), the difference between the
two −2 log likelihoods follows a χ2 distribution with five degrees of free-
dom. The corresponding p-value is prob > chi2 = 0.0074, which is highly
significant.
The second part of the output shows information about the (fixed) re-

gression coefficients. First of all, the regression coefficients can be trans-
formed into rate ratios by taking exp(coef), and secondly the interpretation
of the regression coefficients is the same as has been discussed for the GEE
analysis with the ‘count’ outcome variable. So again, the interpretation is a
combination of a ‘between-subjects’ (cross-sectional) interpretation and a
‘within-subject’ (longitudinal) interpretation.
The last part of the output shows information about the random part of

the analysis. It includes the variance of the (normally distributed) random
intercepts (sigma u) and the estimate of thewithin-subject correlation (rho).
Furthermore, the natural log of sigma u is shown (/lnsig2u), although this
information is not really interesting.
The result of the likelihood ratio test of rho= 0 is based on the comparison

between the presented model and a model with no random intercept, but
with all predictor variables included. This difference is 124.50, and it follows
aχ2 distributionwith one degree of freedom (i.e. the random intercept). The
corresponding p-value (prob > chi2) is very low (i.e. highly significant), so
it is necessary to allow a random intercept.
The next step in the analysis is to investigate the necessity of allowing a

random slope with time as well. Therefore, a random coefficient analysis
with both a random intercept and a random slope with time is performed.
The result of this analysis is shown in Output 7.10.
To investigate the need for a random slope with time (in addition to the

random intercept), the log likelihood of the model with only a random
intercept can be compared to the log likelihood of the model with both a
random intercept and a random slope with time. The difference between
these log likelihoods is 1.2638. Because the likelihood ratio test is based on
the difference between the −2 log likelihoods, the calculated difference has
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Output 7.10. Result of a random coefficient analysis with a ‘count’ outcome variable and
both a random intercept and a random slope with time

log likelihood = -1050.1802
--------------------------------------------------------------------------

YCOUNT Coeff Std. Err. z P > |z| [95% Conf. Interval]

--------------------------------------------------------------------------

KEYS 0.0037276 0.0080096 0.465 0.642 -0.0119709 0.0194261

ACTIVITY -0.0862816 0.0242208 -3.562 0.000 -0.1337535 -0.0388097

SMOKING 0.0338785 0.1082511 0.313 0.754 -0.1782898 0.2460467

GENDER -0.0184725 0.1281452 -0.144 0.885 -0.2696325 0.2326876

TIME 0.0275027 0.0273572 1.005 0.315 -0.0261163 0.0811218

cons -0.1889464 0.5126143 -0.369 0.712 -1.193652 0.8157592

--------------------------------------------------------------------------

Variances and covariances of random effects
--------------------------------------------------------------------------

***level 2 (id)

var(1): 0.61590233 (0.19406681)

cov(1,2): -0.03402709 (0.02612385) cor(1,2): -1

var(2): 0.00187991 (0.00236976)

to bemultiplied by two. This value (i.e. 2.5276) follows aχ2 distributionwith
two degrees of freedom (i.e the random slope with time and the covariance
between the random intercept and random slope). The corresponding p-
value is 0.28, which is not significant, so a random slope with time is not
necessary in this situation.

7.2.2 Comparison between GEE analysis and random coefficient analysis
In Table 7.5, the results of the longitudinal analysis with a ‘count’ outcome
variable performed with GEE analysis and random coefficient analysis are
summarized.When the results of theGEEanalysis and the randomcoefficient
analysis are compared, it can be concluded that the differences observed
for dichotomous outcome variables are not observed for a ‘count’ outcome
variable. In fact, the observed differences between the two sophisticated
techniques are only marginal, although both the regression coefficients and
the standard errors obtained from the randomcoefficient analysis are, in gen-
eral, slightly higher than those obtained from the GEE analysis. The fact that
the ‘subject-specific’ regression coefficients and standard errors are slightly
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Table 7.5. Regression coefficients and standard errors (in parentheses) of
longitudinal regression analyses with a ‘count’ outcome variable; a
comparison between GEE analysis and random coefficient analysis

GEE analysisa Random coefficient analysisb

Keys score 0.00 (0.01) 0.00 (0.01)

Activity −0.08 (0.02) −0.09 (0.02)

Smoking 0.02 (0.08) 0.04 (0.11)

Gender 0.00 (0.12) −0.03 (0.13)

Time 0.00 (0.02) 0.00 (0.02)

a GEE analysis with an exchangeable correlation structure.
b Random coefficient analysis with only a random intercept.

higher than the ‘population-averaged’ regression coefficients has to do with
the characteristics of the log-linear model compared to the linear model.
However, the differences are far less pronounced than has been discussed for
the logistic model.
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Longitudinal studies with two
measurements: the definition
and analysis of change

8.1 Introduction

In the foregoing chapters various sophisticated methods to analyse the
longitudinal relationships between an outcome variable Y and several pre-
dictor variables X have been discussed. In the examples, a dataset with six
measurements was used to illustrate the specific techniques and to demon-
strate the use of particular models for longitudinal data analyses. All the
methods that have been discussed are also suitable for use in studies in
which only twomeasurements are carried out.However, with only twomeas-
urements the more sophisticated statistical techniques are (unfortunately)
seldom or never applied. In practice, in studies with only two measure-
ments, the longitudinal problem is often reduced to a cross-sectional one,
i.e. a problem for which (simple) cross-sectional statistical techniques can be
used. One of the methods that is most frequently used to analyse longitud-
inal relationships in studies with twomeasurements is the analysis of change.
The change in outcome variable Y is related to the change in one or more
predictor variables X . In this chapter, several ways inwhich to define changes
between subsequent measurements will be discussed. The way change can
or must be defined is highly dependent on the structure of the variable of
interest, and on the research questions to be addressed. Like in most other
chapters, separate sections will deal with continuous outcome variables and
dichotomous and categorical outcome variables.

8.2 Continuous outcome variables

The relationship between a change in a continuous outcome variable and
(changes in) several predictor variables can be analysed by simple linear
regression analysis. This is a very popular method, which greatly reduces

167
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the complexity of the statistical analysis. However, how to define the change
between two repeated measurements is often more complicated than is usu-
ally realized.
In the literature, several methods with which to define changes in con-

tinuous outcome variables have been reported. The simplest method is
to calculate the absolute difference between two measurements over time
(Equation (8.1)), a method that is also used in the paired t-test and in the
MANOVA for repeated measurements (see Chapter 3).


Y = Yit2 −Yit1 (8.1)

where Yit2 are observations for subject i at time t2, and Yit1 are observations
for subject i at time t1.
In some situations it is possible that the relative difference between two

subsequent measurements is a better estimate of the ‘real’ change (Equation
(8.2)):


Y = (Yit2 − Yit1)

Yit1
× 100% (8.2)

where Yit2 are observations for subject i at time t2 and Yit1 are observations
for subject i at time t1.
Both techniquesare suitable in situations inwhich thecontinuousoutcome

variable theoretically ranges from 0 to +∞, or from−∞ to 0, or from −∞
to +∞. Somevariables (e.g. scoresonquestionnaires)havemaximalpossible
values (‘ceilings’) and/or minimal possible values (‘floors’). To take these
‘ceilings’ and/or ‘floors’ into account, the definition of change can be as
shown in Equation (8.3).

whenYit2 > Yit1 : 
Y = (Yit2 − Yit1)

(Ymax − Yit1)
× 100% (8.3a)

whenYit2 < Yit1 : 
Y = (Yit2 − Yit1)

(Yit1 − Ymin)
× 100% (8.3b)

when Yit2 = Yit1 : 
Y = 0 (8.3c)

where Yit2 are observations for subject i at time t2, Yit1 are observations for
subject i at time t1, Ymax is the maximal possible value of Y (‘ceiling’), and
Ymin is the minimal possible value of Y (‘floor’).
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It is sometimes suggested to apply Equation (8.4) to take into account
possible ‘floor’ or ‘ceiling’ effects.


Y = (Yit2 −Yit1)

(Ymax −Ymin)
× 100% (8.4)

where Yit2 are observations for subject i at time t2, Yit1 are observations for
subject i at time t1, Ymax is the maximal possible value of Y (‘ceiling’), and
Ymin is the minimal possible value of Y (‘floor’). However, Equation (8.4) is
nothingmore thana linear transformationof theabsolutedifference(i.e.divi-
ded by the range and multiplied by 100). So, basically, the definition of
change based on Equation (8.4) does not take into account possible ‘floors’
or ‘ceilings’.
One of the typical problems related to the definitions of change discussed

so far is the phenomenon of regression to the mean. If the outcome variable
at t = 1 is a sample of randomnumbers, and the outcome variable at t = 2 is
also a sample of random numbers, then the subjects in the upper part of the
distribution at t = 1 are less likely to be in the upper part of the distribution
at t = 2, compared to the other subjects. In the same way, the subjects in the
lower part of the distribution at t = 1 are less likely than the other subjects
to be in the lower part of the distribution at t = 2. The consequence of this is
that, just by chance, the change between t = 1 and t = 2 is (highly) related
to the initial value.
There are, however, some ways in which it is possible to define changes

between subsequent measurements, more or less ‘correcting’ for the phe-
nomenon of regression to the mean. One of these approaches is known as
‘analysis of covariance’ (Equation (8.5)).With this technique the value of the
outcome variable Y at the second measurement is used as outcome variable
in a linear regression analysis, with the observation of the outcome vari-
able Y at the first measurement as one of the predictor variables (i.e. as a
covariate):

Yit2 = β0 + β1Yit1 + · · · + εi (8.5)

where Yit2 are observations for subject i at time t2, Yit1 are observations for
subject i at time t1, and εi is the ‘error’ for subject i .
Otherpredictor variables canbeadded to this linear regressionmodel.This

analysis of covariance is almost, but not quite, the same as the calculation of
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the ‘absolute’ difference (seeEquation (8.1)). This canbe seenwhenEquation
(8.5) is written as Equation (8.6).

Yit2 − β1Yit1 = β0 + · · · + εi (8.6)

where Yit2 are observations for subject i at time t2, Yit1 are observations for
subject i at time t1, and εi is the ‘error’ of subject i .
In the analysis of covariance, the change is defined relative to the value

of Y at t = 1. This relativity is expressed in the regression coefficient β1,
which is known as the autoregression coefficient (see also Section 5.2.3),
and therefore it is assumed that this method ‘corrects’ for the phenomenon
of regression to the mean. This analysis is comparable to the analysis of
‘residual change’, which was first described by Blomquist (1977). The first
step in this method is to perform a linear regression analysis between Yt2 and
Yt1 (Equation (8.5)). The second step is to calculate the difference between
the observed value of Yt2 and the predicted value of Yt2 (predicted by the
regression model described in Equation (8.5)). This difference is called the
‘residual change’, which is thenused as outcomevariable in a linear regression
analysis in which the relationship between the changes in several variables
can be analysed.
Some researchers argue that the best way to define changes, correct-

ing for the phenomenon of regression to the mean, is a combination of
Equations (8.1) and (8.5). They suggest calculating the absolute change
between Yt2 and Yt1, correcting for the value of Yt1 (Equation (8.7)).

Yit2 − Yit1 = β0 + β1Yit1 + · · · + εi (8.7)

where Yit2 are observations for subject i at time t2, Yit1 are observations for
subject i at time t1, and εi is the ‘error’ of subject i .
However, analysing the change, correcting for the initial value at t = 1, is

exactly the sameas theanalysisof covariancedescribed inEquation(8.5).This
can be seen when Equation (8.7) is written in another way (Equation (8.8)).
The only difference between the models is that the regression coefficient
for the initial value is different, i.e. the difference between the regression
coefficients for the initial value is equal to one.

Yit2 = β0 + (β1 + 1) Yit1 + · · · + εi (8.8)
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Table 8.1. Part of the example dataset used to illustrate the phenomenon of
regression to the mean

ID Yt1 Yt2 Yt2 − Yt1 Pred (Yt2)a Residual changeb

1 4.2 3.9 −0.30 4.14786 0.25

2 4.4 4.2 −0.20 4.29722 0.10

3 3.7 4.0 0.30 3.77447 −0.23
...

147 4.6 4.4 −0.20 4.44658 0.05

a Predicted by the regression equation Yt2 = β0 + β1Yt1.
b Calculated as Yt2 minus the predicted value of Yt2.

where Yit2 are observations for subject i at time t2, Yit1 are observations for
subject i at time t1, and εi is the ‘error’ of subject i .
Because it is sometimes difficult to understand what the assumed correc-

tion for the phenomenon of regression to the mean really implies, the fol-
lowing section presents a numerical example to illustrate this phenomenon.

8.2.1 A numerical example
The illustration isbasedon thefirst twomeasurementsof theexampledataset.
Table8.1 showspartof thedataset.To illustrate thephenomenonof regression
to themean, the population is divided into two groups. The groups are based
on the median of Yt1; the upper half is coded as ‘1’, the lower half is coded
as ‘0’. This dichotomous group indicator is now related to the change in
outcome variable Y between t = 2 and t = 1. This change is defined in four
ways: (1) absolute change (Equation (8.1)), (2) residual change, (3) analysis
of covariance (Equation (8.5)), and (4) absolute change, correcting for the
initial value of Y (Equation (8.7)). In Output 8.1, the results of the different
regression analyses are presented.
The results shown in Output 8.1 are quite clear. The absolute change in

outcome variable Y between t = 2 and t = 1 is highly associated with the
group indicator. The change in the outcome variable Y between t = 1 and
t = 2 in the upper half of the distribution at t = 1 is 0.287 higher than the
change in the lower half of the distribution. When the analysis of resid-
ual change or the analysis of covariance is applied, however, the effect of
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Output 8.1. Results of several linear regression analyses relating the change in
outcome variable Y between t = 1 and t = 2 to a group indicator based on the
median of Yt1; (A) absolute change, (B) residual change, (C) analysis of
covariance, (D) absolute change, correcting for the initial value of Y

Standardized

(A) B Std. error coefficient t Sig
----------------------------------------------------------------
Constant 0.002 0.051 0.456 0.649

Group -0.287 0.074 -0.307 -3.881 0.000
----------------------------------------------------------------
Dependent variable: Difference between initial value and follow-up

Standardized

(B) B Std. error coefficient t Sig
----------------------------------------------------------------
Constant 0.000 0.050 -0.175 0.861

Group 0.002 0.072 0.021 0.255 0.799
----------------------------------------------------------------
Dependent variable: Residual change

Standardized

(C) B Std. error coefficient t Sig
----------------------------------------------------------------
Constant 0.908 0.348 2.608 0.010

Group -0.005 0.118 -0.037 -0.413 0.680

Initial value 0.775 0.088 0.785 8.859 0.000
----------------------------------------------------------------
Dependent variable: Follow-up value

Standardized

(D) B Std. error coefficient t Sig
----------------------------------------------------------------
Constant 0.908 0.348 2.608 0.010

Group -0.005 0.118 -0.037 -0.413 0.680

Initial value -0.225 0.088 -0.323 -2.568 0.011
----------------------------------------------------------------
Dependent variable: Difference between baseline and follow-up

belonging to the upper or lower half of the distribution totally disappears. It
is also shown that the analysis of absolute change, correcting for the initial
value, is exactly the same as the analysis of covariance. The only difference is
observed in the regression coefficient for the baseline value: a difference that
is equal to one (see also Equation (8.8)).
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Table 8.2. Mean and standard deviation (in parentheses)
for the variables used in the present example

t1 t2 (after 26 weeks)

Barthel index 6.6 (4.0) 16.0 (4.8)

Age (in years) 64.1 (12.9)

Gender (males/females) 24/21

Although this example seems to be extreme, such situations do occur.
Suppose that a population-based intervention is applied (e.g. a population-
based dietary intervention), in order to decrease cholesterol concentrations
in the blood. Suppose further that the hypothesis is that the intervention is
highly successful for the subjectswith thehighest cholesterol levels atbaseline.
Owing to the phenomenon of regression to the mean, the intervention will
(indeed) be highly successful for the subjects with the highest cholesterol
levels at baseline. However, the question remains whether this is a real effect
or an artefact.

8.2.2 Example
The dataset used to illustrate the different possible ways in which to define
change differs from that used for the other examples. This dataset has an
outcome variable in which ‘floor’ and ‘ceiling’ effects can be illustrated. It
is derived from a study performed by Kwakkel et al. (1999), in which the
change in physical function after stroke was investigated. Physical function
was measured according to the Barthel index, which measures a patient’s
ability to carry out ten everyday tasks. This index (the outcome variable) is
assumed continuous, and can range between 0 and 20. The outcome variable
is measured in the same subjects (N = 45) on two occasions over time (with
a time interval of 26weeks). Changes between the subsequentmeasurements
are related to two predictor variables measured at baseline: age (a continu-
ous predictor variable) and gender (a dichotomous predictor variable).
Table 8.2 gives descriptive information about the variables used in thepresent
example.
To define the change in outcome variable Y between t1 and t2, three

methods were used based on (1) the absolute difference (Equation (8.1)),
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Table 8.3. Mean and standard deviation for the ‘change’ variables used
in the example

Mean Standard deviation

(1) Absolute change 9.4 3.7

(2) Relative change (%)a 247.2 244.4

(3) Change taking into account ‘ceiling’ (%) 75.3 28.4

a Because the relative change value was highly skewed to the right, a natural log

transformation was carried out before the regression analysis was performed.

Table 8.4. Regression coefficients and standard errors (in parentheses) of linear
regression analyses with different approaches to defining change

Age Gender

(1) Absolute change −0.065 (0.043) −0.17 (1.11)

(2) Relative change 0.005 (0.012) −0.09 (0.31)

(3) Change taking into account ‘ceiling’ −0.862 (0.310) 7.69 (7.96)

(4) Analysis of residual change −0.079 (0.042) 0.06 (1.07)

(5) Analysis of covariance −0.085 (0.043) 0.15 (1.09)

(6) Absolute change (correcting for Y at t1) −0.085 (0.043) 0.15 (1.09)

(2) the relative difference (Equation (8.2)), and (3) the difference taking into
account the ‘ceiling’ of the outcome variable Y (Equation (8.3)). Table 8.3
gives descriptive information about the three ‘change’ variables.
All three differences were related to the two predictor variables with

simple linear (cross-sectional) regression analysis. Also applied were the
analysis of residual change, the analysis of covariance (Equation (8.5)), and
the approach in which the absolute change is related to the two predictor
variables, correcting for the value of Y at t1 (Equation (8.7)). Table 8.4
presents the results of the different regression analyses.
The purpose of this example is not to decide what is the best way in which

to define change in this particular example; this choice should be (mainly)
basedonbiological considerations.The importantmessage fromtheexample
is that the definition of change greatly influences the results of the analyses,
and therefore greatly influences the answer to the research question.
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8.3 Dichotomous and categorical outcome variables

For dichotomous outcome variables the situation is slightly more difficult
than was described for continuous outcome variables. This is due to the
fact that a change in a dichotomous outcome variable between subsequent
measurements leads to a categorical variable. First of all, there are subjects
who stay in the ‘highest’ category, there are subjects who stay in the ‘lowest’
category, and there are subjects who move from one category to another
(see Figure 6.2).
In general, for categorical outcome variables withC categories, the change

between subsequent measurements is another categorical variable with C 2

categories. The cross-sectional analysis of the resulting categorical variable
can be performedwith polytomous/multinomial logistic regression analysis,
which is now available in most software packages.
Unfortunately, polytomous logistic regression analysis is not much used.

Therefore, in many studies the resulting categorical outcome variable is
reduced to a dichotomous outcome variable, which can be analysed with
simple logistic regression analysis. One widely used possibility is to dis-
criminate between subjects who showed an ‘increase’ and subjects who
did not, etc. Nevertheless, in every reduction information is lost, and it
is obvious that a dichotomization is not recommended in most research
situations.
Another method with which to analyse changes in a dichotomous out-

come variable is analysis of covariance (see Equation (8.5)). Instead of a
linear regression analysis, logistic regression analysis must be used for the
dichotomous outcome variable.

8.3.1 Example
The example to illustrate the definition of change in a dichotomous outcome
variable is based on the same dataset that has been used in the example with
a continuous outcome variable. The research question to be addressed is also
the same as has been answered for a continuous outcome variable: ‘What is
the relationship beteen age at baseline and gender and the changes in Barthel
index over a period of 26 weeks?’
To create a dichotomous outcome variable, an arbitrary cut-off value for

the Barthel index was chosen, i.e. subjects with a Barthel index >10 and
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Table 8.5. Number of subjects with a Barthel
index >10 and number of subjects with a Barthel
index ≤10 at each of the repeated measurements

t1 t2(after 26 weeks)

Barthel index >10 9 37

Barthel index ≤10 36 8

Table 8.6. Regression coefficientsa and standard errors (in parentheses) of
polytomous logistic regression analysis and (logistic) analysis of covariance

Age Gender

(1) Polytomous logistic regressionb

Subjects staying in the highest category −0.10 (0.05) 1.48 (1.16)

Subjects moving from the lowest to the

highest category −0.05 (0.05) 0.31 (0.85)

(2) (Logistic) analysis of covariance −0.05 (0.05) 0.36 (0.85)

a The regression coefficients can be transformed to odds ratios by taking exp(regression

coefficient).
b Staying in the lowest category is used as reference category.

subjects with a Barthel index ≤10. Table 8.5 gives descriptive information
about this dichotomous outcome variable at each of the repeated measure-
ments.
Because all subjects in the example dataset show an increase in their daily

functioning (i.e. there is an increase in their Barthel index), the changes in
the dichotomous outcome variable result in three groups: (1) subjects who
stay in the lowest category (N = 8), (2) subjects who move from the lowest
category to the highest category (N = 28), and (3) subjects who stay in the
highest category (N = 9). This categorical ‘change’ variable can be analysed
with polytomous (nominal) logistic regression. In addition a logistic analysis
of covariance is also used to answer the research question. The results of both
analyses are summarized in Table 8.6.
It is important to realize that the results of the (logistic) analysis of

covariance are (almost) equal to the results of the comparison between
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subjects who stayed in the lowest category and subjects who moved from
the lowest category to the highest category, obtained from the polytomous
logistic regression analysis. So, both analyses basically provide the same
information, although the polytomous logistic regression analysis is more
extensive, because it provides additional information from a comparison
between subjects who stayed in the highest category and subjects who stayed
in the lowest category. However, it should be noted that this is only true
in the present example in which there were no subjects moving from the
highest to the lowest category. When the latter situation is also present, the
interpretation of the logistic analysis of covariance can be very complicated
and can easily lead to wrong conclusions.

8.4 Comments

InChapter 5, several alternativemethods tomodel longitudinal relationships
were discussed. One of thosemethods dealt with the changes between subse-
quentmeasurements asunitsof analyses (seeSection5.2.2). For thedefinition
of those changes the same problems arise as in the more simple situation in
which there are only twomeasurements over time. Another problemwith the
modelling of changes between two consecutivemeasurements is the fact that
the deviation in the result variable can be so small that it is difficult to detect
any significant relationships. This is especially problematic when the time
periods between the repeated measurements are short, or when the absolute
value of the variable of interest is stable over time, i.e. when there is almost
no change in the variable of interest over time.
Although theabsolute changebetween tworepeatedmeasurements isoften

used to define changes between subsequent measurements, this method is
often criticized; first of all becauseof its assumednegative correlationwith the
initial value (i.e. the phenomenon of regression to the mean), and secondly
because of its low reliability. For more information on this issue, reference is
made to Rogossa (1995) who gives an interesting overview of the ‘myths and
methods’ in longitudinal research and, in particular, the definition of change.
Furthermore, onemust realize that statistical techniques like the paired t-test
andMANOVA for repeated measurements (see Chapter 3) are methods that
are based on the absolute change, and therefore have the same limitations as
have been discussed in this chapter.
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8.5 Sophisticated analyses

In a situation with two measurements, the sophisticated longitudinal tech-
niques discussed in earlier chapters (i.e. GEE analysis and randomcoefficient
analysis) can also be used. However, the results of these sophisticated ana-
lyses differ in an essential way from the results based on different defini-
tions of change presented earlier. This is because the regression coefficients
derived from GEE analysis and random coefficient analysis combine the in-
formation of the ‘between-subjects’ (cross-sectional) and ‘within-subject’
(longitudinal) relationships (see Section 4.5.2). In contrast, the (simple)
analyses of changepresented in this chapter investigate only the ‘longitudinal’
aspect of the relationship.

8.6 Conclusions

It is difficult to give straightforward advice regarding the definition of change
that should be used in a longitudinal study with two measurements. The
choice for a particular method greatly depends on the research questions
to be addressed and the characteristics of the outcome variable. However,
when a continuous outcome variable is involved and there are no anticipated
‘ceiling’ or ‘floor’ effects, the analysis of residual change or analysis of covari-
ance is recommended, because both techniques correct (if necessary) for the
phenomenon of regression to themean. Although these two techniques both
produce almost the same results, the analysis of covariance is probably the
preferred method, because the regression coefficients of the final regression
analysis are somewhat easier to interpret.When there are anticipated ‘ceiling’
or ‘floor’ effects, they should be taken into account. However, the best way of
analysing change is (probably) a combinationof the results of several analyses
obtained from various (biologically plausible) definitions of change.
When changes in a dichotomous outcome variable are analysed, polyto-

mous logistic regression analysis of the categorical variable is preferable to
(logistic) analysis of covariance, because it provides more information and
the interpretation of the results is fairly straightforward.
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Analysis of experimental studies

9.1 Introduction

Experimental (longitudinal) studies differ from observational longitudinal
studies in that experimental studies (in epidemiology often described as
trials) include one or more interventions. In general, at baseline the pop-
ulation is (randomly) divided into two or more groups. In the case of two
groups, one of the groups receives the intervention of interest and the other
group receives a placebo intervention, no intervention at all, or the ‘usual’
treatment. Both groups are monitored over a certain period of time, in
order to find out whether the groups differ with regard to a particular out-
come variable. The outcome variable can be continuous, dichotomous or
categorical.
In epidemiology, the simplest form of experimental longitudinal study is

one in which a baseline measurement and only one follow-up measurement
are performed (Figure 9.1). If the subjects are randomly assigned to the dif-
ferent groups (interventions), a comparison of the follow-up values between
the groups will give an answer to the question of which intervention is more
effective with regard to the particular outcome variable. The assumption
is that random allocation at baseline will ensure that there is no difference
between the groups at baseline (in fact, in this situation a baseline measure
is not even necessary).
Another possibility is to analyse the changes between the values of the

baseline and the follow-up measurement, and to compare these changes
among the different groups. In Chapter 8 it was explained that the definition
of change can be rather complicated and, although this technique is widely
used to analyse experimental studies, the interpretation of the results is more
difficult than many researchers think.

179
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time

arbitrary value

1 2 3 4 5 6

Figure 9.1. An experimental longitudinal study in which one intervention and one placebo
group are compared with regard to a continuous outcome variable at one
follow-up measurement (� --–-–- intervention, • – – – placebo).

In the past decade, experimental studieswith only one follow-upmeasure-
ment have become very rare. At least one short-term follow-upmeasurement
and one long-term follow-up measurement ‘must’ be performed. However,
more than two follow-up measurements are usually performed in order to
investigate the ‘development’ of the outcome variable, and to compare the
‘developments’ among the groups (Figure 9.2). These more complicated
experimental designs are often analysed with the simple methods that have
already been described, mostly by analysing the outcome at each follow-up
measurement separately, or sometimes even by ignoring the information
gathered from the in-between measurements, i.e. only using the last meas-
urement as outcome variable to evaluate the effect of the intervention. This
is even more surprising, in view of the fact that there are statistical methods
available which can be used to analyse the difference in ‘development’ of the
outcome variable in two or more groups.
It is obvious that the methods that can be used for the statistical analysis

of experimental (longitudinal) studies are exactly the same as have been dis-
cussed for observational longitudinal studies. The remainder of this chapter
is devoted to an extensive example covering all aspects of the analysis of an
experimental study. For educational purposes, ‘all’ various possible ways to
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time

arbitrary value

1 2 3 4 5 6

Figure 9.2. An experimental longitudinal study in which one intervention and one placebo
group are compared with regard to a continuous outcome variable at more than
one follow-up measurement (� --–-–- intervention, • – – – placebo).

analyse the data of an experimental study will be discussed. It should be
realized that this will also include methods that are not really suitable in the
situation of the example datasets.

9.2 Example with a continuous outcome variable

9.2.1 Introduction
The dataset used to illustrate an experimental study is (of course) different
to the dataset used in the examples for observational longitudinal studies.
The present example makes use of a dataset in which a therapy intervention
is compared to a placebo intervention with regard to the development of
systolic blood pressure (Vermeulen et al., 2000). In this experimental study,
three measurements were carried out: one baseline measurement and two
follow-up measurements with equally spaced time intervals. A total of 152
patients were included in the study, equally divided between the therapy and
the placebo group.
Table 9.1 gives descriptive information about the variables used in the

study, while Figure 9.3 illustrates the development of systolic blood pressure
over time. The main aim of the therapy under study was not to lower the
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Table 9.1. Mean and standard deviation (in parentheses) in the treatment
groups at three time-points

Placebo group Therapy group

t1 t2 t3 t1 t2 t3

N 71 74 66 68 69 65

Systolic blood pressure 130.7 129.1 126.3 126.5 122.5 121.6

(17.6) (16.9) (14.2) (12.5) (11.2) (12.1)

time

systolic blood pressure

1 2 3

Figure 9.3. Development of systolic blood pressure over time in the treatment groups (� --–-–-
therapy, • – – – placebo).

systolic blood pressure; this was investigated as a side-effect. That is one of
the reasonswhy thenumberof subjects at baselinewas lower than thenumber
of subjects at the first follow-up measurement.

9.2.2 Simple analysis
The simplest way to answer the question of whether the therapy intervention
is more effective than the placebo intervention is to compare systolic blood
pressure values at the two follow-upmeasurements between the two groups.
The hypothesis is that the systolic blood pressure will be lower in the group
that received the therapy intervention than in the group that received the
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Table 9.2. Mean systolic blood pressure at t = 2 and t = 3; a comparison
between therapy and placebo group and p-values derived from independent
sample t-tests

Therapy Placebo p-Value

Short-term (systolic blood pressure at t = 2) 122.5 129.1 0.007

Long-term (systolic blood pressure at t = 3) 121.6 126.3 0.044

placebo intervention. In this example, a distinction can be made between
the short-term effects and the long-term effects. To analyse the short-term
effects, themean systolic blood pressure measured at t = 2 can be compared
between the therapy group and placebo group. For the long-term effects, the
systolic blood pressure measured at t = 3 can be compared. The differences
between the two groups can be analysed with an independent sample t-test.
In Table 9.2 the results of these analyses are shown.
From the results in Table 9.2 it can be seen that there is both a short-term

and a long-term effect in favour of the therapy group, but that the long-
term differences between the two groups are smaller than the short-term
differences. This indicates that the short-term effect is stronger than the
long-term effect. However, in Table 9.1 and in Figure 9.3 it was shown that at
baseline there was a difference in systolic blood pressure between the therapy
and the placebo groups. A better (but still simple) approach is therefore not
to analyse the absolute systolic blood pressure values at t = 2 and t = 3,
but to analyse the short-term and long-term differences in systolic blood
pressure. In Chapter 8, the various possible ways in which to define change
were extensively discussed, so that will not be repeated here. In this example
the absolute differences were used. Obviously, the difference scores for the
therapy and the placebo groups can be compared to each other with an
independent sample t-test. Table 9.3 shows the results of these analyses.
The results presented in Table 9.3 show a totally different picture than

the results in Table 9.2. The analysis of the differences between baseline
and follow-up measurements did not show a beneficial effect of the therapy
intervention compared with the placebo intervention. Although the differ-
ences for the therapy group were slightly greater than the differences for the
placebo group in all comparisons, the independent sample t-test did not
produce any significant difference. In conclusion, most of the assumed effect
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Table 9.3. Mean values of the differences in systolic blood pressure between
t = 1 and t = 2 and between t = 1 and t = 3; a comparison between therapy
and placebo group and p-value derived from an independent sample t-test

Therapy Placebo p-Value

Short-term differencea 3.38 0.64 0.189

Long-term differenceb 4.23 3.13 0.616

a (Systolic blood pressure at t = 1) − (systolic blood pressure at t = 2).
b (Systolic blood pressure at t = 1) − (systolic blood pressure at t = 3).

of the therapy was already present at baseline. So this ‘effect’ could not be
attributed to the therapy intervention.

9.2.3 Summary statistics
There are many summary statistics available with which to estimate the
effect of an intervention in an experimental longitudinal study. In fact, the
simple analyses carried out in Section 9.2.2 can also be considered as sum-
mary statistics. Depending on the research question to be addressed and the
characteristics of the outcome variable, different summary statistics can be
used. The general idea of a summary statistic is to express the longitudinal
development of a particular outcome variable as one quantity. Therefore, the
complicated longitudinal problem is reduced to a cross-sectional problem.
To evaluate the effect of the intervention, the summary statistics of the groups
under study are compared to each other. Table 9.4 gives a few examples of
summary statistics.
One of the most frequently used summary statistics is the area under the

curve (AUC). The AUC is calculated as shown in Equation (9.1):

AUC = 1

2

T−1∑

t=1

(tt+1 − tt)(Yt + Yt+1) (9.1)

where AUC is the area under the curve, T is the number of measurements,
and Y is the observation of the outcome variable at time t.
The unit of the AUC is themultiplication of the unit used for the outcome

variable Y and the unit used for time. This is often rather difficult, and there-
fore the AUC is often divided by the total time period under consideration
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Table 9.4. Examples of summary statistics which are frequently
used in experimental studies

The mean of all follow-up measurements

The highest (or lowest) value during follow-up

The time needed to reach the highest value or a certain predefined level

Changes between baseline and follow-up levels

The area under the curve

Table 9.5. Area under the curve for systolic blood pressure between
t = 1 and t = 3; a comparison between therapy and placebo group
and p-value derived from an independent sample t-test

Therapy Placebo p-Value

Area under the curve 246.51 259.23 0.007

in order to obtain a ‘weighted’ average level over the time period. When the
AUC is used as a summary statistic, the AUCmust first be calculated for each
subject; this is then used as an outcome variable to evaluate the effect of the
therapy under study. Again, this comparison is simple to carry out with an
independent t-test. The result of the analysis is shown in Table 9.5.
FromTable 9.5 it can be seen that a highly significant difference was found

between the AUC values of the two groups. This will not directly indicate
that the therapy intervention has an effect on the outcome variable. In the
calculation, the difference in baseline value between the two groups is not
taken into account. So, again, a difference in baseline value between groups
can cause a difference in AUC.
When the time intervals are equally spaced (like in the example dataset),

the AUC is comparable to the overall mean. The AUC becomes interest-
ing when the time intervals in the longitudinal study are unequally spaced,
because then the AUC reflects the ‘weighted’ average in a certain outcome
variable over the total follow-up period.

9.2.4 MANOVA for repeated measurements
With the simple methods described in Section 9.2.2, separate analyses for
short-term and long-term effects were performed. The purpose of summary
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Output 9.1. Result of MANOVA for repeated measurements for systolic blood pressure
(only the ‘univariate’ estimation procedure is presented)

AVERAGED Tests of Significance for SYSBP using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 55410.88 117 473.60

GROUP 3122.56 1 3122.56 6.59 0.011

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 14854.68 234 63.48

TIME 816.41 2 408.21 6.43 0.002

GROUP BY TIME 160.95 2 80.48 1.27 0.283

statistics, such as the AUC, is to summarize the total development of the
outcome variable, in order to make simple cross-sectional analysis possible.
Another way to analyse the total development of the outcome variable and to
answer the questionofwhether the therapyhas an effect on a certain outcome
variable, is to use MANOVA for repeated measurements (see Chapter 3).
Output 9.1 shows the result of the MANOVA for repeated measurements.
The output of the MANOVA for repeated measurements reveals that for

systolicbloodpressure there is anoverall groupeffect (F = 6.59, p = 0.011),
and an overall time effect (F = 6.43, p = 0.002), but no significant inter-
action between group and time (F = 1.27, p = 0.283). In particular, the
information regarding the interaction is essential, because this indicates that
the observed overall group effect does not change over time. This means
that from the results of the MANOVA for repeated measurements it can be
concluded that the two groups differ over time (a significant group effect),
but that this difference is present along the whole longitudinal period, in-
cluding the baseline measurement. So there is no ‘real’ therapy effect. From
Figure 9.2 it can be seen that there is a decrease in systolic blood pressure
over time. Because a decrease in systolic blood pressure is considered to be
beneficial, a beneficial development is observed in both groups, which seems
to be independent of the therapy intervention.

9.2.4.1 MANOVA for repeated measurements corrected for the baseline value
When the baseline values are different in the groups to be compared, it
is often suggested that a MANOVA for repeated measurements should be
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Output 9.2. Result of MANCOVA for repeated measurements for systolic blood pressure
(only the ‘univariate’ estimation procedure is presented)

AVERAGED Tests of Significance for SYSBP using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 10836.93 116 93.422

GROUP 539.47 1 539.47 5.77 0.018

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 12586.27 232 54.25

TIME 1959.22 2 979.62 18.05 0.000

GROUP BY TIME 304.69 2 152.34 2.80 0.062

performed, correcting for the baseline value of the outcome variable. With
this procedure the changes between the baseline measurement and the first
follow-up measurement as well as the changes between the first and the
second follow-up measurements are corrected for the baseline value.
It should be noted carefully that when this procedure (which is also known

as multiple analysis of covariance, i.e. MANCOVA) is performed, the base-
line value is both an outcome variable (i.e. to create the difference between
the baseline value and the first follow-up measurement) and a covariate.
In some software packages (such as SPSS) this is not possible, and therefore
an exact copy of the baseline value must be added to the model. Output 9.2
shows the results of the MANCOVA.
From the results of Output 9.2 it can be seen that there is a significant

therapy effect (p = 0.018). In the results obtained from theMANCOVA, the
therapy by time interaction does not provide information about the ‘direct’
therapy effect. It provides information about whether the observed therapy
effect is stronger at the beginning or at the end of the follow-up period.
From the results it can be seen that the therapy by time interaction is almost
significant (p = 0.062), but it is not clear during which part of the follow-
up period the effect is the strongest. Therefore, a graphical representation of
the MANCOVA results is needed (see Output 9.3). From Output 9.3 it can
be seen that in the first part of the follow-up period, the therapy effect is the
strongest. It should further be noted that the correction for baseline leads to
equal starting points for both groups.
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Output 9.3. Graphical representation of the results of the
MANCOVA (--–-–- placebo, – – – therapy)
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9.2.5 Sophisticated analysis
In the discussion on observational longitudinal studies (Chapter 4) it has
already been mentioned that the questions answered by MANOVA for
repeated measurements could also be answered by sophisticated methods
(GEE analysis and random coefficient analysis). The advantage of the
sophisticated methods is that all available data are included in the analy-
sis, while with MANOVA for repeated measurements (and therefore also
with MANCOVA) only those subjects with a complete dataset are inclu-
ded. In this example the MANOVA for repeated measurements (and the
MANCOVA)was carried out for 118 patients, whereaswithGEE analysis and
randomcoefficient analysis all available data relating to all 152patients canbe
used.
To analyse the effects of the therapy on systolic blood pressure, the follow-

ing statistical model was first used (Equation (9.2)):

Yit = β0 + β1 × therapy + β2 × time + εit (9.2)
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where Yit are observations for subject i at time t, β0 is the intercept, β1 is
the regression coefficient for therapy versus placebo, β2 is the regression
coefficient for time, and εit is the ‘error’ for subject i at time t.

Output 9.4. Results of the GEE analysis with systolic
blood pressure as outcome variable, and therapy and
time as predictor variables

Linear Generalized Estimating Equations

Response: SYSBP Corr: Exchangeable

Column Name Coeff StErr p-value
-------------------------------------------

0 Constant 132.578 2.108 0.000

2 TIME -2.098 0.537 0.000

3 THERAPY -4.634 2.057 0.024
-------------------------------------------
n:152 s:14.326 #iter:13

Estimate of common correlation 0.654

First a GEE analysis was performed, in which an exchangeable corre-
lation structure was chosen (for a detailed discussion on different corre-
lation structures, see Section 4.5.2). Output 9.4 shows the result of this
GEE analysis. From Output 9.4 it can be seen that therapy has a signific-
ant negative association with the development of systolic blood pressure
(β = −4.634, standard error 2.057, p = 0.024). This does not mean that
the therapy has an effect on systolic blood pressure, because it is possible
that the association was already present at baseline. In fact, the analysis per-
formed is only suitable in a situation in which the baseline values of the
outcome variable are equal for the therapy group and the placebo group.
To analyse the ‘real’ therapy effect, a second GEE analysis has to be carried
out in which the therapy by time interaction is also added to the model
(Equation (9.3)).

Yit = β0 + β1 × therapy + β2 × time + β3 × therapy × time + εit (9.3)

where Yit are observations for subject i at time t, β0 is the intercept, β1 is
the regression coefficient for therapy versus placebo, β2 is the regression
coefficient for time, β3 is the regression coefficient for the therapy by time
interaction, and εit is the ‘error’ for subject i at time t.
The results of this analysis are shown in Output 9.5.
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Output 9.5. Results of the GEE analysis with systolic blood
pressure as outcome variable and therapy, time and the
interaction between therapy and time as predictor variables

Linear Generalized Estimating Equations

Response: SYSBP Corr: Exchangeable

Column Name Coeff StErr p-value
-------------------------------------------------

0 Constant 132.214 2.462 0.000

2 TIME -1.912 0.747 0.010

3 THERAPY -3.894 3.142 0.215

4 THERAPY*TIME -0.378 1.074 0.725
-------------------------------------------------
n:152 s:14.343 #iter:10

Estimate of common correlation 0.654

When an interaction term is added to the analysis, the most interesting
part is the significance level of the interaction term, which is 0.725 in this
example. This interaction is not close to significance, so we can conclude that
there is a negative association between therapy and systolic blood pressure

Output 9.6. Results of the random coefficient analysis with systolic blood pressure as
outcome variable Y, and therapy and time as predictor variables; a random intercept and
a random slope with time are considered

log likelihood = -1596.9878
--------------------------------------------------------------------------
sysbp Coeff Std. Err. z P > |z| [95% Conf. Interval]

--------------------------------------------------------------------------
therapy -4.878309 2.037021 -2.395 0.017 -8.870797 -0.8858217

time -2.081433 0.5364209 -3.880 0.000 -3.132799 -1.030068

cons 132.5799 1.824256 72.676 0.000 129.0045 136.1554
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------

63.856006 (7.3923457)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 206.76445 (44.841986)

cov(1,2): -22.372747 (14.005004) cor(1,2): -0.69024558

var(2): 5.0810734 (5.6104568)
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(see Output 9.2), but that this association does not change over time. So
(probably) the difference is already present at baseline, a finding which was
already observed in earlier analysis. It is important to notice that when an
interaction term is added to the model, the regression coefficients (and the
significance levels) of the separate variables can only be interpreted in com-
binationwith the regression coefficients of the interaction term. As expected,
when a randomcoefficient analysis was applied, the results were comparable.
Outputs 9.6 and 9.7 present the results of the random coefficient analysis.

Output 9.7. Results of the random coefficient analysis with systolic blood pressure as
outcome variable, and therapy, time and the interaction between therapy and time as
predictor variables; a random intercept and a random slope with time are considered

log likelihood = -1596.9146
--------------------------------------------------------------------------

sysbp Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------
therapy -3.961371 3.143711 -1.260 0.208 -10.12293 2.200189

time -1.879885 0.7508875 -2.504 0.012 -3.351597 -0.4081722

ther*tim -0.4096528 1.070124 -0.383 0.702 -2.507058 1.687752

cons 132.1346 2.162306 61.108 0.000 127.8966 136.3726
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------
63.925841 (7.3772168)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 206.38405 (44.695857)

cov(1,2): -22.203339 (13.923335) cor(1,2): -0.69271147

var(2): 4.9780094 (5.570582)

In addition to the use of an interaction term, there is an alternative
approach to the analysis of data in an experimental longitudinal study in
which the baseline values of a particular outcome variable are different. In
this approach, which is known as analysis of covariance, the values of an
outcome variable Y at t = 2 and t = 3 are related to therapy, correcting for
the baseline value of Y at t = 1 (Equation (9.4)).

Yit = β0 + β1 × therapy + β2 × time + β3 Yt1 + εit (9.4)
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where Yit are observations for subject i at time t, β0 is the intercept, β1 is
the regression coefficient for therapy versus placebo, β2 is the regression
coefficient for time, β3 is the regression coefficient for the baseline value of
Y , and εit is the ‘error’ for subject i at time t.
Thismodel looks similar to the autoregressionmodel whichwas described

in Chapter 5 (Section 5.2.3), but it is slightly different. In the autoregression
model, a correction was made for the value of the outcome variable at
t = t − 1. In the analysis of covariance, a correction is made for the baseline
value of the outcome variable (see also Section 8.2). Output 9.8 shows the
results of the GEE analysis (based on Equation (9.4)) for systolic blood pres-
sure. Surprisingly, in the GEE analysis a significant therapy effect was found.
For therapy, a regression coefficient of −3.68 was found, which indicates
that the therapy group has a 3.68 mmHg lower systolic blood pressure than
the placebo group. Comparable results were found with random coefficient
analysis (see Output 9.9).

Output 9.8. Results of the GEE analysis with systolic blood
pressure as outcome variable, and therapy, time and the
baseline value of systolic blood pressure as predictor variables

Linear Generalized Estimating Equations

Response: SYSBP Corr: Exchangeable

Column Name Coeff StErr p-value
---------------------------------------------------

0 Constant 51.208 10.221 0.000

2 THERAPY -3.684 1.534 0.016

3 TIME -1.915 1.037 0.065

5 SYSBPT1 0.615 0.080 0.000
---------------------------------------------------
n:130 s:10.48 #iter:24

Estimate of common correlation 0.352

The results derived from the sophisticated analysis are comparable to the
results obtained from the MANOVA and MANCOVA comparison. In the
analysis with interaction terms, no significant difference was found between
the therapy group and the placebo group,while in the analysis of covariance a
significant therapy effectwasobserved.Thedifferencebetweena longitudinal
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Output 9.9. Results of a random coefficient analysis with systolic blood pressure as
outcome variable, and therapy, time and the baseline value of systolic blood pressure as
predictor variables

log likelihood = -927.31482
--------------------------------------------------------------------------
sysbp Coeff Std. Err. z P > |z| [95% Conf. Interval]

--------------------------------------------------------------------------
therapy -3.665562 1.576142 -2.326 0.020 -6.754744 -0.5763806

time -1.932226 1.036378 -1.864 0.062 -3.963489 0.099038

sysbpt1 0.6126458 0.0520755 11.765 0.000 0.5105797 0.714712

cons 51.47565 7.058234 7.293 0.000 37.64177 65.30953
--------------------------------------------------------------------------

Variance at level 1
--------------------------------------------------------------------------

63.276222 (8.7697865)

Variances and covariances of random effects
--------------------------------------------------------------------------
***level 2 (id)

var(1): 59.642216 (36.495775)

cov(1,2): -8.3496959 (14.099664) cor(1,2): -0.50792301

var(2): 4.530976 (3.27834)

analysis correcting for the baseline value and the longitudinal analysis with
an interaction term is that in the latter basically the difference between Y
at t = 1 and Y at t = 2 and the difference between Y at t = 2 and Y at
t = 3 are combined in one analysis, while in the analysis of covariance (i.e.
correcting for the baseline values) the difference between Y at t = 1 and Y
at t = 2 and the difference between Y at t = 1 and Y at t = 3 are analysed
simultaneously. A difference in results between the two methods probably
indicates that there is a small but consistent therapy effect, or that the therapy
effect mostly occurs at the beginning of the follow-up period. This (small)
effect is not detected by the analysis with an interaction term, but is detected
by the approach correcting for the baseline value. In fact, the correction
for baseline over-estimates the therapy effect, because the short-term effect
is doubled in the estimation of the overall therapy effect. This situation is
illustrated in Figure 9.4. A possible solution for this over-estimation is the
use of an autoregressive model (see Section 5.2.3) instead of a correction for
the baseline value.
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Figure 9.4. Illustration of the difference between two approaches that can be used in the
analysis of an experimental longitudinal study. The effects a1 and a2 are detected
by the analysis with an interaction term (Equation (9.3)), while the effects b1 and
b2 are detected by the longitudinal analysis, correcting for the baseline value
(Equation (9.4)). For the situation in (a), the two methods will show comparable
results (a1 = b1 and a2 = b2). For the situation shown in (b), the longitudinal
analysis, correcting for baseline, will detect a stronger decline than the analysis
with an interaction term (a1 = b1 and a2 < b2). The situation in (c) will produce
the same result as (b) (i.e. a1 = b1 and a2 < b2) (--–-–- outcome variable).
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Figure 9.4. (cont.)

9.3 Example with a dichotomous outcome variable

9.3.1 Introduction
The example of an experimental studywith a dichotomous outcome variable
uses a dataset from a hypothetical study in which a new drug is tested on
patients with a stomach ulcer. Treatment duration is 1 month, and patients
are seen at three follow-up visits. The first follow-up visit is directly at the end
of the intervention period (after 1 month) and the two long-term follow-up
visits 6 and 12 months, respectively, after the start of the intervention. In
this randomized controlled trial (RCT), the intervention (i.e. thenewdrug) is
compared to a placebo, and 60 patients were included in each of the two
groups. In the follow-up period of 1 year, there was no loss to follow-up, and
therefore no missing data. Figure 9.5 shows the proportion of patients who
had fully recovered at the different follow-up measurements.

9.3.2 Simple analysis
The classical way to analyse the results of such an RCT is to analyse the differ-
ence in proportion of patients experiencing full recovery between the inter-
vention and the placebo group at each of the three follow-upmeasurements,
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Figure 9.5. The proportion of patients recovered in an RCT to investigate the effect of an
intervention (i.e. a new drug) (� --–-–- intervention, • – – – placebo).

by simply applying a χ2 test. Furthermore, at each of the follow-up meas-
urements, the effect of the intervention can be estimated by calculating the
relative risk (and corresponding 95% confidence interval). The relative risk
is defined as the proportion of subjects recovered in the intervention group,
divided by the proportion of subjects recovered in the placebo group. The
results are summarized in Table 9.6.
From the results in Table 9.6 it can be seen that during the intervention

period of 1 month both the intervention group and the placebo group show
quite ahighproportionofpatientswho recover, andalthough in the interven-
tion group this proportion is slightly higher, the difference is not statistically
significant (p = 0.20). After the intervention period, in both groups there is
an increase in the number of patients who recovered, but in the intervention
group this increase is more pronounced, which results in a significant differ-
ence between the intervention group and the placebo group after 1 year of
follow-up.

9.3.3 Sophisticated analysis
Although this RCT is a longitudinal study, up to now only simple cross-
sectional analyseshavebeenperformed.After these simpleanalyses, a sophist-
icated longitudinal analysis can be carried out to investigate the difference
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Table 9.6. Results of an RCT to investigate the effect of an intervention, i.e. the number
of patients recovered, the ‘relative risks’ and 95% confidence intervals (in parentheses) for
the intervention group and the corresponding p-values at each of the follow-up
measurements

Recovery after 1 month Recovery after 6 months Recovery after 12 months

Yes No Yes No Yes No

Intervention 35 25 39 21 60 10

Placebo 28 32 29 31 30 30

Relative risk 1.28 (0.87–1.88) 1.48 (0.97–2.53) 3.00 (1.61–5.58)

p-Value 0.20 0.07 < 0.01

in the total development of recovery between the intervention and placebo
groupsover the follow-upperiodof 1 year.A logisticGEEanalysiswas carried
out to illustrate the possibilities and limitations of the sophisticated longit-
udinalanalysis. Inthisexample,onlyaGEEanalysiswillbeconsidered,andnot
a randomcoefficient analysis, because themain interest lies in the ‘population
average’ estimates (for adetaileddiscussion regarding thedifferencesbetween
GEE analysis and random coefficient analysis with dichotomous outcome
variables, see Section 6.2.5). The first thing that should be realized is that as a
result of a logisticGEE analysis, odds ratios can be calculated.Odds ratios can
be interpreted as relative risks, but they are not the same. Owing to themath-
ematical background of the odds ratios and relative risks, the odds ratios are
always an over-estimation of the ‘real’ relative risk. This over-estimation be-
comes stronger as the proportion of ‘cases’ (i.e. recovered patients) increases.
To illustrate this, the odds ratios for intervention versus placebo were calcu-
lated at each of the follow-up measurements (see Table 9.7).
From the results in Table 9.7 it can be seen that the calculated odds ratios

are an over-estimation of the ‘real’ relative risks, and that the confidence
intervals are wider, but that the significance levels are the same. So, when a
logistic GEE analysis is carried out, onemust realize that the results (i.e. odds
ratios) obtained from such an analysis have to be interpreted with caution,
and cannot be directly interpreted as relative risks.
Output 9.10 presents the results of the GEE analysis (assuming an ex-

changeable correlation structure), in which the following research question
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Table 9.7. Comparison between relative risks and odds ratios, including 95%
confidence intervals (in parentheses) and p-values as a result of an RCT to
investigate the effect of an intervention

1 month 6 months 12 months

Relative risk 1.28 (0.87–1.88) 1.48 (0.97–2.53) 3.00 (1.61–5.58)

p-Value 0.20 0.07 < 0.01

Odds ratio 1.60 (0.78–3.29) 1.99 (0.95–4.13) 5.00 (2.14–11.66)

p-Value 0.20 0.07 < 0.01

Output 9.10. Results of the GEE analysis to compare an intervention with a
placebo with regard to recovery (a dichotomous outcome variable) measured
over a period of one year

Binomial Generalized Estimating Equations

Response: RECOV Corr: Exchangeable

Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -1.472 0.192 0.000

2 TIME 0.176 0.020 0.000 1.192 1.147 1.239

3 INTERV 0.742 0.251 0.003 2.100 1.284 3.435
----------------------------------------------------------------
n:120 s:0.999 #iter:10

Estimate of common correlation 0.149

was answered: ‘What is the effect of the intervention (compared to the
placebo) on recovery over a period of 1 year?’ In the analysis firstly a linear
relationship with time is modelled (i.e. time is coded as 0, 1, 6 and 12).
From Output 9.10 it can be seen that the intervention is highly successful

over the total follow-up period (i.e. odds ratio 2.10, 95% confidence interval
1.28 to 3.44). As all patients were ill at baseline (by definition), there are no
differences at baseline, so it is useless to correct for baseline values. It is also
not really interesting to investigate the interaction between the intervention
and time, because the main effect of the intervention already implies that
the intervention is successful over the 1-year follow-up period. This is in
contrast with the example presented in Section 9.2, in which there was a
continuous outcome variable and the baseline values of the intervention and
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the placebo group differed. In that case the interaction between time and
the intervention was necessary to evaluate the effect of the intervention (or
a correction for the baseline value would have to be performed).
In the present example, a possible significant interaction between the in-

tervention and time will give information about whether the effect of the
intervention is stronger at the beginning of the follow-up period or stronger
at the end of the follow-up period. Output 9.11 shows the results of the GEE
analysis with the interaction between the intervention and time included
in the model. From Output 9.11 it can be seen that there is a significant
interaction between the intervention and time (p = 0.003). The sign of the
regression coefficient of the interaction term is positive, which indicates that
the effect of the intervention is stronger at the end of the follow-up period.
This effect was already noticed in the separate analyses at each of the follow-
up measurements (see Table 9.6)

Output 9.11. Results of the GEE analysis to compare an intervention with a
placebo with regard to recovery (a dichotomous outcome variable) measured
over a period of one year, with the interaction between time and intervention

Binomial Generalized Estimating Equations

Response: RECOV Corr: Exchangeable

Column Name Coeff StErr p-value Odds 95% CI
----------------------------------------------------------------

0 Constant -1.158 0.170 0.000

2 TIME 0.119 0.025 0.000 1.126 1.072 1.184

3 INTERV 0.164 0.231 0.479 1.178 0.748 1.854

4 INT*TIME 0.129 0.043 0.003 1.137 1.046 1.237
----------------------------------------------------------------
n:120 s:1.006 #iter:10

Estimate of common correlation 0.166

One must realize, however, that in the GEE models time is coded as 0, 1,
6 and 12. So, in the analysis a linear development in time is assumed. From
Figure 9.4 it can be seen that the relationship with time is far from linear,
so a second GEE analysis was performed, assuming a quadratic relationship
with time. Output 9.12 shows the results of this analysis.
From Output 9.12 it can be seen that not only the linear component,

but also the quadratic component of the relationship between the outcome
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Output 9.12. Results of the GEE analysis to compare an intervention with a
placebo with regard to recovery (a dichotomous outcome variable), measured
over a period of one year, assuming a quadratic relationship with time

Binomial Generalized Estimating Equations

Response: RECOV Corr: Exchangeable

Column Name Coeff StErr p-value Odds 95% CI

----------------------------------------------------------------

0 Constant -1.884 0.208 0.000

2 TIME 0.523 0.060 0.000 1.688 1.501 1.898

3 INTERV 0.798 0.268 0.003 2.221 1.313 3.756

5 TIME**2 -0.029 0.005 0.000 0.972 0.936 0.980
----------------------------------------------------------------
n:120 s:0.992 #iter:12

Estimate of common correlation 0.161

variable and time is highly significant (p < 0.001). It is therefore better to
model a quadratic development in time, in order to obtain a more valid
estimate of the effect of the intervention. Calculated with this model, the
effect of the intervention expressed as an odds ratio is 2.22 (95% confidence
interval 1.31 to 3.76). Therefore, with the intervention drug, a patient is 2.22
times more likely to recover than with a placebo, calculated over a follow-
up period of 1 year. In the model that only included a linear relationship
with time, the odds ratio of the intervention (versus placebo) was 2.10 (95%
confidence interval 1.28 to 3.44). Again, it should be noted that the odds
ratios are an over-estimation of the ‘real’ relative risks.

9.4 Comments

The analyses discussed for both the continuous and dichotomous outcome
variables in experimental studies were limited to ‘crude’ analyses, in such a
way that no confounders (apart from the value of the outcome variable at
baseline intheexampleofacontinuousoutcomevariable)and/oreffectmodi-
fiers (apart from the interaction between therapy/intervention and time in
both examples) have been discussed. Potential effect modifiers can be inter-
esting if one wishes to investigate whether the intervention effect is different
for sub-groups of the population under study. The way confounders and
effect modifiers are treated in longitudinal data analysis is, however, exactly
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the same as in simple cross-sectional regression analysis. The construction of
prognostic models with variables measured at baseline, which is quite pop-
ular in clinical epidemiology these days, is also the same as in cross-sectional
analysis.
In the examples of the sophisticated analyses, time was modelled as a con-

tinuous variable, i.e. either as a linear function or a quadratic function.How-
ever, as in thecaseofobservational longitudinal studieswhenthere isno linear
relationship between the outcome variable and time, time can also be mod-
elled as a categorical variable (see Section 4.8).
In both examples discussed in this chapter, the first analyses performed

were simple cross-sectional analyses. In fact, it is recommended that statistical
analysis to evaluate the effect of an intervention should always start with a
simple analysis. This not only provides insight into the data, but can also
provide (important) information regarding the effect of the intervention.
It should also be noted that, although the simple techniques and summary
statistics are somewhat limited, the interpretation of the results is often easy,
andtheiruse inclinicalpractice is thereforeverypopular. Ingeneral, toanswer
many research questions the simple techniques and summary statistics are
quite adequate, and there is no real need to use the sophisticated techniques.
Moreover, the resultsof the sophisticated techniquesare (sometimes)difficult
to interpret. However, when the number of repeated measurements differs
between subjects, and/or when there are many missing observations, it is
(highly) recommended that themore sophisticated statistical analyses should
be applied.
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Missing data in longitudinal studies

10.1 Introduction

One of the mainmethodological problems in longitudinal studies is missing
data or attrition, i.e. the (unpleasant) situation when not all N subjects have
data on all T measurements.When subjects havemissing data at the end of a
longitudinal study they are often referred to as drop-outs. It is, however, also
possible that subjects miss one particular measurement, and then return to
the study at the next follow-up. This type of missing data is often referred
to as intermittent missing data (Figure 10.1). It should be noted that, in
practice, drop-outs and intermittent missing data usually occur together.
In the statistical literature a distinction is made between three types of

missing data: (1) missing completely at random (MCAR: missing, inde-
pendent of both unobserved and observed data), (2) missing at random
(MAR: missing, dependent on observed data, but not on unobserved data,
or, in other words, given the observed data, the unobserved data are ran-
dom), and (3) missing not at random (MNAR: missing, dependent on un-
observed data) (Little and Rubin, 1987). Missing at random usually occurs
when data are missing by design. An illustrative example is the Longitud-
inal Aging Study Amsterdam (Deeg and Westendorp-de Serière, 1994). In
this observational longitudinal study, a large cohort of elderly subjects was
screened for the clinical existence of depression. Because the number of non-
depressed subjects was much greater than the number of depressed subjects,
a random sample of non-depressed subjects was selected for the follow-up,
in combination with the total group of depressed subjects. So, given the
fact that the subjects were not depressed, the data were missing at random
(see Figure 10.2).
Although the above-mentioned distinction between the three different

types of missing data is important, it is rather theoretical. For a correct

202



203 Introduction

time

X

X

X

X
X

X

X
X

X

XX

X

X

X
X

X

X

X
X

X
X

X

X
X

X
X

X

X

X

X
X

X

X

X

X

X
X

X

drop-outs

intermittent missing data

1 2 3 4 5 6

X X X X X X X X X
X X X X X X X X X

Figure 10.1. Illustration of intermittent missing data and drop-outs (X indicates a missing
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Figure 10.2. An illustration of data missing by design, i.e. missing at random.
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interpretation of the results of longitudinal data analysis, two issues must
be considered. First of all, it is important to investigate whether or not mis-
sing data on the outcome variable Y at a certain time-point are dependent
on the values of the outcome variable observed one (or more) time-point(s)
earlier. In other words, it is important to investigate whether or not missing
data depend on earlier observations. Secondly, it is important to determine
whether or not certain predictor variables are related to the occurrence
of missing data. For example, ‘are males more likely to have missing data
than females?’ In general, it is preferable to make a distinction between
‘ignorable’ missing data (i.e. missing, not dependent on earlier observations
and predictor variables) and ‘non-ignorable’ or ‘informative’ missing data
(i.e. missing, dependent on earlier observations or predictor variables).

10.2 Ignorable or informative missing data?

Although there is an abundance of statistical literature describing (complic-
ated) methods that can be used to investigate whether or not one is dealing
with ignorable or informative missing data in a longitudinal study (see, for
instance, Diggle, 1989; Ridout, 1991; Diggle et al., 1994), it is basically quite
easy to investigate this matter. It can be done by comparing the group of
subjects with data at t = t with the group of subjects with missing data at
t = t. First of all, this comparison can concern the particular outcome vari-
able of interest measured at t = t − 1. Depending on the distribution of that
particular variable, an independent sample t-test (for continuous variables)
or a χ2 test (for dichotomous and categorical outcome variables) can be
carried out. Secondly, the influence of certain predictor variables on the oc-
currence of missing data can be investigated. This can be done by means of
a (simple) logistic regression analysis, with missing or non-missing at each
of the repeated measurements as a dichotomous outcome variable.
Up to now, a distinction has been made between missing data dependent

on earlier values of the outcome variable Y and missing data dependent
on values of possible predictor variables. Of course, this distinction is not
really necessary, because in practice they both occur together and can both be
investigatedwith logistic regression analysis,with both the earlier value of the
outcome variable and the values of the predictor variables as possible deter-
minants for why the data are missing. It should be noted that the distinction
is made purely for educational purposes.
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When there areonly a few(repeated)measurements, andwhen theamount
of missing data at each of the (repeated) measurements is rather high,
the above-mentioned procedures are highly suitable to investigate whether
one is dealing with ignorable or informative missing data. However, when
the amount of missing data at a particular measurement is rather low, the
power to detect differences between the subjects with data and the subjects
without data at a particular time-point can be too low. Although the possible
significance of the differences is not themost important issue in determining
whether or not the pattern of missing data is ignorable or informative, it can
be problematic to interpret the observed differences correctly. Therefore, the
information about missing data at different time-points can be combined
(Diggle, 1989; Ridout, 1991; Diggle et al., 1994). However, the statistical
techniques involved are seldom used in practice.

10.3 Example

10.3.1 Generating datasets with missing data
The dataset used to illustrate the influence of missing data on the results of
statistical analysis is the same example dataset which has been used through-
out this book (see Section 1.4). All incomplete datasets were derived from
the full dataset, and at each time-point only the outcome variable Y is
assumed to be missing. In this example, a situation with both drop-outs
and intermittent missing data will be considered.
In the datasets with drop-outs the first three measurements were com-

pleted by all subjects, but from the fourth measurements onwards data on
25% of the individuals were missing. The missing data were considered to
be random (i.e. ignorable missing data) and dependent on the value of the
outcome variableY at the thirdmeasurement (i.e. informativemissing data),
i.e. data on the subjects with the highest values for the outcome variable Y
at t = 3 were assumed to be missing at t = 4, t = 5 and t = 6.
In the datasets with intermittent missing data, at each repeated measure-

ment (including the initial measurement at t = 1) 25% of the data were
missing. Again this was assumed to be at random (i.e. ignorable missing
data) or dependent on the observed data (i.e. informative missing data),
i.e. data on the subjects with the highest values for the outcome variable Y at
t = t were assumed to be missing at t = t + 1. In this example dataset with
informative missing data, a full dataset at t = 1 was considered.
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Table 10.1. Results of independent sample t-tests to compare the drop-outs
after t = 3 with the non-drop-outs, according to the value of the outcome
variable Y at t = 3

Degrees of

N Mean(Yt1) t-Value freedom p-Value

Ignorable

Missing 33 4.24 0.25 145 0.807

Not missing 114 4.27

Informative

Missing 39 5.20 15.91 145 <0.001

Not missing 108 3.93

10.3.2 Analysis of determinants for missing data
As has been mentioned in the introduction of this chapter, it is important to
investigate whether or not the missing data are dependent either on earlier
values of the outcome variable or on the values of certain predictor variables.
This knowledge can have important implications for the interpretation of
the results of a longitudinal study.
It is quite simple to investigate whether the missing data are dependent

on values of the outcome variable Y one time-point earlier. This can be
done by comparing the subjects with data at t = t with the subjects with
missing data at t = t. The comparison is then performed on the value of the
outcome variable at t = t − 1. The difference between the two groups can be
tested with an independent sample t-test. In this example, only the dataset
with drop-outs will be used for illustration, but comparable analyses can be
performed for the dataset with intermittent missing data.
In Table 10.1, the results of the independent sample t-tests are given for

the dataset with drop-outs. Owing to the structure of the missing data, the
type of missing data at t = 4 is analysed. So the subjects with missing data
at t = 4 are compared with the subjects with data at t = 4, according to the
value of the outcome variable Y at t = 3.
Because the missing datasets are forced to be either ignorable or inform-

ative, the results are as expected. Considerable differences were found in the
outcome variable Y at t = 3 between the subjects with data and the subjects
without data at t = 4, when the missing data were forced to be informative.
No significant differences were found in the dataset with ignorable missing
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Table 10.2. Regression coefficients and p-values of logistic regression analyses
to investigate possible determinants (measured at t = 3) for drop-out after
t = 3

X1 X2 X3 X4

Ignorable 1.36 (p = 0.26) 0.17 (p = 0.17) 0.59 (p = 0.54) −0.06 (p = 0.91)

Informative 0.16 (p = 0.89) 0.58 (p < 0.01) −0.21 (p = 0.71) 0.04 (p = 0.94)

data. The independent sample t-test is only performed to determinewhether
themissing data are dependent on the outcome variable one time-point earl-
ier. It is also of interest to analyse other possible determinants of the missing
data. Information about these determinants can be important for correct
interpretation of the results of a longitudinal study with missing data. A lo-
gistic regression analysis was subsequently performed, with missing at t = 4
and not missing at t = 4 as the dichotomous outcome variable. The values
of the four predictor variables in the example dataset (X1 to X4) at t = 3
were analysed as potential determinants for the missing data. In Table 10.2
the results of the logistic regression analyses are summarized.
From the results presented in Table 10.2 it can be seen that it is only in the

dataset with informative missing data that subjects with high values of X2

at t = 3 seem to have a higher ‘chance’ of having missing data at t = 4. This
is not really surprising, because from earlier analyses of the example dataset
it is already known that X2 and Y are associated with each other. So, when
missing data are found to be dependent on the value of Y one measurement
earlier, it can be expected that this is also the case for X2.
The analyses described in this section illustrate how to investigate possible

determinants of themissing data. In the example datasets these analyses were
not really interesting, because the datasets with missing data were forced
to be either informative or ignorable. However, in practice it is necessary
to investigate both issues, because interpretationof the results highly depends
on the ‘nature’ of the missing data.

10.4 Analysis performed on datasets with missing data

In the foregoing paragraphs it was stressed that it is important to investigate
whether one is dealingwith ignorable or informativemissing data. First of all,
it is important to invoke a correct interpretation of the results of the statistical
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analysis performed on the ‘incomplete’ dataset. Secondly, it is also important
because the sophisticated statistical techniques (i.e.GEEanalysis and random
coefficient analysis) differ in the way in which they treatmissing data. In fact,
in the literature it is often argued that one of the most important differences
betweenGEEanalysis and randomcoefficient analysis is found in the analysis
of datasets with missing data. The difference is that with GEE analysis the
missing data are assumed to bemissing completely at random (MCAR), and
that in randomcoefficient analysis themissingdata are assumed tobemissing
at random (MAR) (Little, 1995; Albert, 1999; Omar et al., 1999). When GEE
analysis isperformedonan incompletedatasetwith informativemissingdata,
the calculation of the working correlation structure is biased, and therefore
the calculation of the regression coefficients is also assumed to be biased.
However, from the literature it is not clear how important this bias really is.
It is therefore interesting to analyse the missing datasets with both GEE

analysis and randomcoefficient analysis, and to compare the results. Further-
more, it wasmentioned earlier that one of the advantages of bothGEE analy-
sis and random coefficient analysis compared, for instance, toMANOVA for
repeated measurements, is that with the sophisticated techniques all longit-
udinal data are included, while in the (traditional) MANOVA for repeated
measurements only the subjects with complete data are included in the ana-
lysis. Therefore, in the example (Section 10.4.1) all analyses (i.e. MANOVA,
GEE analysis and random coefficient analysis) will be performed on the
datasets with missing data that were described in Section 10.3.1.

10.4.1 Example
Table 10.3 shows the results of MANOVA for repeated measurements for
the complete dataset and the datasets with missing data. WithMANOVA for
repeated measurements, the overall difference between two groups (indic-
ated by X4, i.e. males and females), the overall development in time, and
the possible difference in development over time between the two groups
(indicated by the time by X4 interaction) were investigated. For both the
within-subject effects (i.e. the effects involving time), and the between-
subjects effect (i.e. the overall group difference), explained variances were
calculated (see Chapter 3).
The most important difference between the results of the MANOVA on

incomplete datasets and the results of the MANOVA on a complete dataset
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Table 10.3. Explained variances and p-values derived from a MANOVA for
repeated measurements performed on a complete dataset and several
incomplete datasets

X4 Time Time by X4

Complete dataset 0.04 (p = 0.01) 0.42 (p < 0.01) 0.05 (p < 0.01)

Drop-outs

Ignorable 0.03 (p = 0.05) 0.43 (p < 0.01) 0.05 (p < 0.01)

Informative 0.01 (p = 0.23) 0.48 (p < 0.01) 0.09 (p < 0.01)

Intermittent missing data

Ignorable 0.06 (p = 0.29) 0.40 (p < 0.01) 0.01 (p = 0.01)

Informative 0.02 (p = 0.29) 0.51 (p < 0.01) 0.01 (p < 0.01)

are observed for the between-subjects effect of X4. This is not reflected in
a difference in explained variance, but in the p-values. The fact that the
p-values are much higher in the datasets with missing data is due to the
fact that with MANOVA for repeated measurements only the subjects with
complete data are included in the analysis. So, particularly in the dataset
with intermittent missing data, the power of the analysis is highly reduced.
From the results it can be seen that there seems to be no influence of the
type of missing data. This is not really surprising, because in the dataset with
informative missing data, these missing data were forced to be dependent
on earlier observations of the outcome variable Y , and from Table 10.2 it
was already known that the missing data were independent of the value
of X4.
Table 10.4 shows the results of the GEE analysis, and Table 10.5 shows

the results of the random coefficient analysis. With both techniques the lon-
gitudinal relationship between outcome variable Y and the four predictor
variables X1 to X4 and time was analysed. The regression coefficients and
standard errors calculated with the different methods used to analyse the
incomplete datasets are only slightly different to those obtained from the
analysis of the complete dataset. Furthermore, the differences found in
the datasets with informativemissing data are no greater than the differences
found in the datasets with ignorable missing data. So, in this particular
situation, both GEE analysis and random coefficient analysis are ‘valid’ in
research situationswithmissingdata, evenwhen themissingdata are (highly)
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Table 10.4. Regression coefficients and standard errors (in parentheses) derived from a
GEE analysisa performed on a complete dataset and several incomplete datasets to
investigate the (longitudinal) relationship between outcome variable Y and several
predictor variables

X1 X2 X3 X4 Time

Complete dataset −0.02 (0.27) 0.11 (0.02) −0.11 (0.06) 0.10 (0.12) 0.11 (0.01)

Drop-outs

Ignorable 0.05 (0.26) 0.14 (0.02) −0.10 (0.07) 0.05 (0.13) 0.10 (0.02)

Informative 0.05 (0.27) 0.15 (0.03) −0.07 (0.07) 0.05 (0.13) 0.07 (0.01)

Intermittent missing data

Ignorable 0.06 (0.27) 0.13 (0.02) −0.10 (0.07) 0.09 (0.14) 0.09 (0.02)

Informative 0.07 (0.29) 0.13 (0.02) −0.05 (0.07) 0.08 (0.13) 0.09 (0.01)

a GEE analysis with an exchangeable correlation structure.

Table 10.5. Regression coefficients and standard errors (in parentheses) derived from a
random coefficient analysisa performed on a complete dataset and several incomplete
datasets to investigate the (longitudinal) relationship between outcome variable Y and
several predictor variables

X1 X2 X3 X4 Time

Complete dataset 0.02 (0.27) 0.11 (0.02) −0.12 (0.06) 0.04 (0.12) 0.11 (0.01)

Drop-outs

Ignorable 0.06 (0.27) 0.14 (0.02) −0.11 (0.06) 0.02 (0.12) 0.10 (0.01)

Informative 0.05 (0.27) 0.15 (0.02) −0.08 (0.06) 0.05 (0.12) 0.07 (0.01)

Intermittent missing data

Ignorable 0.03 (0.28) 0.13 (0.02) −0.05 (0.07) 0.01 (0.12) 0.09 (0.01)

Informative 0.05 (0.28) 0.13 (0.02) −0.06 (0.06) 0.04 (0.12) 0.09 (0.01)

a Random coefficient analysis with both a random intercept and a random slope with time.

informative. In other words, for a continuous outcome variable the differ-
ences betweenGEE analysis and randomcoefficient analysis with incomplete
datasets are not as obvious as is often suggested. The results are, again, an
indication that the assumed differences between the two techniques aremore
theoretical than practical.
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Table 10.6. Regression coefficients and standard errors (in parentheses) derived from a
GEE analysisa performed on a complete dataset and several incomplete datasets to
investigate the (longitudinal) relationship between the dichotomous outcome variable Y
and several predictor variables

X1 X2 X3 X4 Time

Complete dataset 0.22 (0.77) 0.34 (0.06) −0.15 (0.18) 0.08 (0.34) −0.08 (0.04)

Drop-outs

Ignorable 0.48 (0.79) 0.40 (0.02) −0.02 (0.34) −0.04 (0.19) −0.08 (0.04)

Informative 0.37 (0.76) 0.40 (0.07) 0.03 (0.33) −0.05 (0.22) −0.12 (0.04)

Intermittent missing data

Ignorable 0.17 (0.79) 0.39 (0.07) −0.09 (0.19) 0.05 (0.39) −0.09 (0.04)

Informative 0.42 (0.81) 0.40 (0.07) 0.03 (0.19) 0.03 (0.38) −0.09 (0.04)

a GEE analysis with an exchangeable correlation structure.

Table 10.7. Regression coefficients and standard errors (in parentheses) derived from a
random coefficient analysisa performed on a complete dataset and several incomplete
datasets to investigate the (longitudinal) relationship between the dichotomous outcome
variable Y and several predictor variables

X1 X2 X3 X4 Time

Complete dataset 0.33 (1.63) 0.72 (0.14) −0.23 (0.36) 0.46 (0.70) −0.07 (0.10)

Drop-outs

Ignorable 0.78 (1.80) 0.87 (0.16) 0.07 (0.73) −0.03 (0.40) −0.12 (0.10)

Informative 0.36 (1.90) 0.86 (0.17) 0.35 (0.80) −0.02 (0.42) −0.16 (0.11)

Intermittent missing data

Ignorable 0.46 (1.58) 0.81 (0.16) −0.15 (0.44) −0.01 (0.68) −0.19 (0.09)

Informative 0.74 (1.43) 0.83 (0.17) 0.12 (0.42) 0.18 (0.74) −0.16 (0.08)

a Random coefficient analysis with only a random intercept.

For dichotomous outcome variables, however, the situation is totally dif-
ferent. Tables 10.6 and 10.7 show the results of the GEE analysis and ran-
dom coefficient analysis on incomplete datasets with a dichotomous out-
come variable. Both GEE analysis and random coefficient analysis of the
incomplete datasets produce results that are (remarkably) different from the
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results of the analysis of the complete dataset. The differences are observed
in both the regression coefficients and the standard errors. In general, there
are no systematic differences between the performance of GEE analysis and
random coefficient analysis. Furthermore, there are no systematic differ-
ences between the results of the analysis of the datasets with ignorable and
informativemissing data. In fact, the influence ofmissing data in the analysis
of a dichotomous outcome variable is rather unpredictable.

10.5 Comments

Although the examples in the foregoing sections have general implications, it
should be noted that in these examples only a few scenarioswithmissing data
were illustrated, while in real life situations infinite patterns of missing data
can occur. Furthermore, in the examples only the Y values were presented
as missing, while in practice it is just as likely to have missing data in the
predictor variables as well. However, based on the results of the examples it
can be concluded that GEE analysis and random coefficient analysis behave
equally well in the analysis of a dataset with missing data, or equally badly
when a dichotomous outcome variable is considered. When the outcome
variable was continuous, the results of both GEE analysis and random coef-
ficient analysis performed on a dataset with missing data were comparable
to the results obtained from a complete dataset. However, this was not the
case for dichotomous outcome variables. Furthermore, there were no major
differences between drop-outs and intermittentmissing data, and there were
nomajor differences between ignorable and informative missing data. It can
also be concluded that performing a MANOVA for repeated measurements
on a dataset with missing data is of limited value owing to the removal of all
incomplete cases from the analysis.
Because a few decades ago MANOVA for repeated measurements was

the only available method for the analysis of longitudinal data, imputation
techniqueswere developed inorder to create complete datasets. In the follow-
ing sections, several of the available imputation methods to replace missing
data will be discussed, and the influence of different imputationmethods on
the results of statistical analysis will be illustrated. This will not be limited to a
MANOVA for repeatedmeasurements, but the performance of GEE analysis
and random coefficient analysis on imputed datasets will also be evaluated.
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10.6 Imputation methods

10.6.1 Continuous outcome variables
Imputationmethods canbedivided into cross-sectional and longitudinal im-
putation methods. Both can be used to replace missing data in longitudinal
studies. The cross-sectionalmethods described here are the ‘mean ormedian
of series’ method, the ‘hot-deck’ method and the ‘cross-sectional linear re-
gression’method. Longitudinal imputationmethodswhich are discussed are
the ‘last value carried forward’ or ‘last observation carried forward’ method,
the ‘linear interpolation’ method and the ‘longitudinal linear regression’
method. The ‘multiple imputation’ method will also be considered.

10.6.1.1 Cross-sectional imputation methods
All variants of the ‘mean or median of series’ imputation method involve
calculation of the average value (mean or median) of the available data for a
particular variable at a particular time-point. This average value is imputed
for themissing values. Because of its simplicity, it is by far themost frequently
used imputationmethod inpractice. A somewhat different approach is called
the ‘hot-deck’ imputation method. With this approach, the average value of
(or a random value drawn from) a sub-set of comparable subjects (e.g. sub-
jects with the same gender, age, etc.) is imputed for the missing value. The
minimum number of subjects in the sub-set can be one, and the maximum
number can be the total population (which makes the ‘hot-deck’ approach
the same as the ‘mean/median of series’ approach). With ‘cross-sectional
regression’ methods, a linear regression with all available predictor variables
at a certain time-point is used to provide predicted values for the outcome
variable Y at that particular time-point. This predicted value is used for the
imputation. It is obvious that this approach is only suitable in situations
when only the outcome variable is missing and not the (possible) predictor
variables.

10.6.1.2 Longitudinal imputation methods
The simplest longitudinal imputationmethod is called the ‘last value carried
forward’ (LVCF)method. In this approach the value of a variable at t = 1 for
a particular subject is imputed for a missing value for that same subject at
t = 2. Another longitudinal imputation method is the ‘linear interpolation’



214 Missing data in longitudinal studies

missing
data

imputation analysis

pooled
results

Figure 10.3. Illustration of the multiple imputation technique.

method. With this method, for a missing value at t = 2 the average of the
values at t = 1 and t = 3 is imputed, assuming a linear development over
time of the variables with missing data. Comparable, but somewhat more
sophisticated, is the ‘longitudinal regression’ imputation method. With this
method the linear regression between the outcome variable Y and time is
assessed for each subject with a missing value. The predicted value for the
time-point of the missing value is imputed for that missing value.

10.6.1.3 Multiple imputation method
With the ‘multiple imputation’ method, various (say M) imputation values
are calculated for everymissing value.With the M imputations,M complete
datasets are developed, and on each dataset created in this way, statistical
analyses are performed. The M complete dataset summary statistics (e.g.
regression coefficients) can be combined (i.e. pooled) to form one summary
statistic (see Figure 10.3).
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The point estimate of the summary statistic is calculated as the average of
theM imputations.Thevarianceof the summary statistic isusually calculated
from two components. One component reflects the within-imputation vari-
ance (the average of the variances of the summary statistics of the M impu-
tations) and the other component reflects the between-imputation variance
(the difference between the summary statistic of each imputation and the
average of the summary statistics of the M imputations). Equation (10.1)
shows a possible way in which the overall variance is calculated:

vart =

M∑

i=1

vari

M
(10.1a)

varb =

M∑

i=1

(bi − b̄)2

M − 1
(10.1b)

var = vart + M + 1

M
varb (10.1c)

where vart is the within-imputation variance, vari is the variance of impu-
tation i, M is the number of imputations, varb is the between-imputations
variance, bi is the parameter of interest calculated with imputation i, and b̄
is the average of the parameter of interest calculated with M imputations.
The major advantage of the multiple imputation method is that the com-

bined variance is greater than the variance obtained from a single imputa-
tion method. This greater variance accounts for the uncertainty introduced
by estimating the missing values. In principle, the M imputations of the
missing values are M repetitions from the ‘posterior predictive distribution’
of the missing values. The ‘posterior predictive distribution’ is related to a
‘model for missing data’ which can (or in fact must) be based on the in-
formation derived from the simple analyses discussed in Sections 10.2 and
10.3. When the missing data are known to be dependent on earlier values
of the outcome variable and on the values of several predictor variables,
these variables can be used (for instance in a regression analysis) to create
the ‘posterior predictive distribution’ of the missing values (see the example
in Section 10.6.3.1). For extensive information on the multiple imputation
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technique, reference is made to several other publications (e.g. Rubin, 1987,
1996; Schafer, 1997, 1999).

10.6.2 Dichotomous and categorical outcome variables
For dichotomous and/or categorical outcome variables a commonly used
cross-sectional method is imputation of the category with the highest fre-
quency for the subject(s) with missing data. This can either be based on
the total population (‘mean of series’ approach) or on a particular sub-set
(‘hot-deck’ approach). The most frequently used longitudinal imputation
method available for dichotomous and categorical missing data is the ‘LVCF’
method. Linear interpolation can be used, but the average value of the out-
come variable at the two surrounding time-points has to be rounded off.
For dichotomous outcome variables, cross-sectional and longitudinal logis-
tic regression can also be used to predict missing data. However, in these
situations the predicted values also have to be rounded off, which makes the
use of these techniques slightly complicated.

10.6.3 Example
10.6.3.1 Continuous outcome variables

The influence of missing data and the influence of imputation methods on
the results of statistical analysis will be illustrated for MANOVA for repeated
measurements and for GEE analysis, and will only be shown for the datasets
with intermittent missing data (for an extensive illustration see Twisk and
de Vente, 2002).
In this example, one cross-sectional imputation method (i.e. ‘mean of

series’), one longitudinal imputation method (i.e. ‘LVCF’) and one multiple
imputation technique will be illustrated. For the ‘multiple imputation’ used
in this example, five independent samples from the ‘posterior predictive dis-
tribution’ of the missing values were drawn to form five complete datasets.
The ‘posterior predictive distribution’ was created by an individual linear
regression analysis between the outcome variable Y and time. So, for each
subject with missing data, a regression analysis with time was performed,
based on the observed values for that particular subject. With the estimated
regression coefficient and corresponding standard error at each missing
data-point, a normal distributionwas createdwith the value estimated by the
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Table 10.8. Explained variances and p-values (in parentheses) derived from a
MANOVA for repeated measurements performed on datasets with imputed
missing values

X4 Time Time by X4

Complete dataset 0.04 (p = 0.01) 0.42 (p < 0.01) 0.05 (p < 0.01)

Ignorable missing data

Mean 0.04 (p = 0.02) 0.37 (p < 0.01) 0.03 (p < 0.01)

LVCFa 0.03 (p = 0.04) 0.33 (p < 0.01) 0.05 (p < 0.01)

Multiple imputation 0.03 (p = 0.02) 0.24 (p < 0.01) 0.05 (p < 0.01)

Informative missing data

Mean 0.04 (p = 0.02) 0.36 (p < 0.01) 0.03 (p < 0.01)

LVCFa 0.03 (p = 0.03) 0.37 (p < 0.01) 0.05 (p < 0.01)

Multiple imputation 0.04 (p = 0.02) 0.35 (p < 0.01) 0.05 (p < 0.01)

a LVCF is the last value carried forward.

regression equation as mean value. From this normal distribution, the im-
puted values are drawn.
Table10.8 shows the results of theMANOVAfor repeatedmeasurements. If

the results fromTable 10.8 are compared to the results presented inTable 10.3,
it can be seen that for the effect of X4 and the interaction between time and
X4, the results of the imputed datasets are closer to the complete dataset than
the results of the incomplete datasets. Furthermore, the different imputation
techniques produced comparable results. On the other hand, imputation of
missing data led to an under-estimation of the overall time effect (i.e. lower
explained variance).
Table 10.9 shows the results of the GEE analysis. Although the overall

conclusions (if based on p-values) of the GEE analysis for the different
predictor variables do not differ between the various datasets, the point
estimates and standard errors differ remarkably between the various im-
putation methods. First of all, it can be seen that the longitudinal impu-
tation method (i.e. LVCF) behaves better than the cross-sectional imputa-
tion method (i.e. mean). Furthermore, it can be seen that with the mean
imputation technique, the standard errors of the regression coefficients
for the time-independent predictors X1 and X4 (less pronounced) were
under-estimated. This results in smaller confidence intervals and lower
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Table 10.9. Regression coefficients and standard errors (in parentheses) derived from a
GEE analysisa performed on datasets with imputed missing values

X1 X2 X3 X4 Time

Complete dataset −0.02 (0.27) 0.11 (0.02) −0.11 (0.06) 0.10 (0.11) 0.11 (0.01)

Ignorable missing data

Mean 0.05 (0.22) 0.11 (0.02) −0.07 (0.06) 0.05 (0.11) 0.10 (0.01)

LVCFb −0.11 (0.28) 0.10 (0.02) −0.10 (0.06) 0.05 (0.13) 0.08 (0.01)

Multiple imputation −0.13 (0.31) 0.10 (0.03) −0.07 (0.11) 0.04 (0.16) 0.10 (0.03)

Informative missing data

Mean 0.02 (0.21) 0.10 (0.02) −0.04 (0.06) 0.05 (0.09) 0.09 (0.01)

LVCFb −0.05 (0.28) 0.09 (0.02) −0.12 (0.05) 0.09 (0.13) 0.09 (0.01)

Multiple imputation 0.02 (0.33) 0.10 (0.02) −0.06 (0.07) 0.11 (0.15) 0.10 (0.02)

a GEE analysis with an exchangeable correlation structure.
b LVCF is the last value carried forward.

p-values, which can lead to incorrect conclusions. This effect was strongest
in the dataset with informative missing data. The fact that GEE analysis
under-estimates the standard errors of the regression coefficients of the
time-independent predictors when cross-sectional imputation methods are
applied, has to do with the decreased variance in outcome variable Y ,
due to the cross-sectional imputation techniques, and with the estimation
procedures for time-independent predictor variables in GEE analysis.
The results of the analyses of incomplete datasets (see Table 10.4) were

comparable to the results of the analysis of datasets with any of the im-
putation techniques, so imputation does not seem to be necessary. With
themultiple imputation technique, all standard errors were ‘over-estimated’.
This is caused by the between-imputations variance, which is added as an
extra component to the overall variance. The larger standard errors lead to
broader confidence intervals and therefore to higher p-values, which is the
reason for more conservative conclusions about the relationships analysed.
It seems, however, justified that the imputation uncertainty is reflected in
the final results of the statistical analyses. The differences in point estimates
between multiple imputations and the other imputation methods were not
consistent,which canbedue to the choice of the (relatively simple) ‘model for
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missing data’ used for the multiple imputations, although in general simple
(but reasonable) ‘models for missing data’ are preferable.
Because of its relative simplicity, in the ‘applied’ literature, the cross-

sectional mean is the imputation method most often used. It is important
to realize that using the cross-sectional mean imputation method can lead
to rather ‘strange’ results of statistical analysis (see also Twisk and de Vente,
2002).

10.6.3.2 Dichotomous outcome variables
In the example with dichotomous outcome variables, three imputation tech-
niques will also be illustrated: one cross-sectional imputation method (i.e.
‘category with the highest frequency’), one longitudinal imputation method
(i.e. ‘LVCF’), and a multiple imputation method. The latter is based on the
probability of having a certain value of the outcome variableYdich for the sub-
ject with missing data. So, when a particular subject has one missing value
in six measurements, and one at three measurements and zero at the other
two measurements, the probability to impute 1 is 0.6 and the probability to
impute 0 is 0.4. This procedure is performed for all subjects with missing
data and is repeated five times.
Because of the difference between the results of GEE analysis and ran-

dom coefficient analysis of dichotomous outcome variables (see Chapter 6),
both sophisticated techniques will be used to illustrate the ‘importance’ of
imputing missing values. Furthermore, not only the datasets with intermit-
tent missing data but also the datasets with drop-outs will be analysed. A
MANOVA for repeated measurements will (of course) not be performed,
because this type of analysis can only be carried out for continuous outcome
variables (see Chapter 3).
Tables 10.10 and 10.11 show the results of both analyses. When the results

of the analysis with imputed datasets are compared to the results obtained
from analysis of the datasets with missing values (see Tables 10.6 and 10.7),
it must be concluded that the imputation of missing values did not lead to
more ‘valid’ results of the statistical analysis. This is quite surprising, because
it was expected that for instance the LVCF method applied to the informa-
tive missing datasets would produce results comparable to those obtained
from analysis of the complete dataset. For both GEE analysis and random
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Table 10.10. Regression coefficients and standard errors (in parentheses) derived from a
GEE analysisa performed on datasets with imputed missing values with a dichotomous
outcome variable

X1 X2 X3 X4 Time

Complete dataset 0.22 (0.76) 0.34 (0.06) −0.15 (0.20) 0.08 (0.37) −0.08 (0.04)

Ignorable drop-outs

Highest frequencyb 0.17 (0.75) 0.38 (0.06) −0.01 (0.20) −0.09 (0.37) −0.17 (0.04)

LVCFc 0.10 (0.77) 0.32 (0.06) −0.03 (0.19) −0.01 (0.38) −0.05 (0.04)

Multiple imputation 0.28 (0.78) 0.33 (0.06) −0.02 (0.20) 0.04 (0.38) −0.05 (0.04)

Informative drop-outs

Highest frequencyb 0.26 (0.66) 0.34 (0.08) 0.07 (0.26) −0.13 (0.34) −0.39 (0.06)

LVCFc −0.32 (0.81) 0.26 (0.06) −0.09 (0.18) 0.15 (0.38) 0.03 (0.04)

Multiple imputation 0.00 (0.80) 0.27 (0.06) −0.02 (0.18) 0.14 (0.37) −0.03 (0.04)

Ignorable intermittent missing data

Highest frequencyb 0.19 (0.72) 0.40 (0.06) −0.02 (0.22) −0.21 (0.36) −0.09 (0.04)

LVCFc −0.44 (0.79) 0.29 (0.06) −0.11 (0.17) −0.04 (0.38) −0.07 (0.04)

Multiple imputation 0.15 (0.80) 0.30 (0.06) −0.06 (0.18) 0.11 (0.38) −0.09 (0.04)

Informative intermittent missing data

Highest frequencyb 0.41 (0.58) 0.36 (0.06) −0.03 (0.21) −0.03 (0.28) −0.17 (0.04)

LVCFc 0.15 (0.79) 0.34 (0.07) −0.02 (0.16) 0.05 (0.37) −0.02 (0.04)

Multiple imputation 0.17 (0.80) 0.29 (0.06) −0.02 (0.19) 0.13 (0.37) −0.05 (0.04)

a GEE analysis with an exchangeable correlation structure.
b Highest frequency is the category with the highest frequency.
c LVCF is the last value carried forward.

coefficient analysis this is, however, far from true. Due to the ‘robustness’
of GEE analysis in a longitudinal analysis with dichotomous outcome vari-
ables and the (relative) ‘non-robustness’ of random coefficient analysis (see
Chapter 6 and Chapter 12), it was furthermore expected that the results of
the GEE analysis would be ‘better’ than the results obtained from random
coefficient analysis. However, this was also not true in the example presented.
Neither did the multiple imputation method lead to ‘better’ results.
In general, there are distortions in the results of the analyses of both incom-

plete datasets and the imputed datasets, which makes the interpretation of
these results very problematic. In fact, the results of the analyses performed
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Table 10.11. Regression coefficients and standard errors (in parentheses) derived from a
random coefficient analysisa performed on datasets with imputed missing values with a
dichotomous outcome variable

X1 X2 X3 X4 Time

Complete dataset 0.88 (1.81) 0.70 (0.14) −0.25 (0.36) 0.34 (0.71) −0.16 (0.07)

Ignorable drop-outs

Highest frequencyb 0.18 (1.73) 0.65 (0.13) 0.02 (0.37) −0.05 (0.61) −0.31 (0.08)

LVCFc −0.49 (1.53) 0.79 (0.16) −0.10 (0.40) −0.09 (0.77) −0.13 (0.08)

Multiple imputation 1.02 (2.17) 0.75 (0.16) −0.01 (0.38) 0.37 (0.91) −0.13 (0.07)

Informative drop-outs

Highest frequencyb 0.34 (0.92) 0.47 (0.10) 0.10 (0.32) −0.08 (0.40) −0.51 (0.07)

LVCFc −1.13 (1.86) 0.72 (0.16) −0.17 (0.46) −0.30 (0.71) 0.06 (0.08)

Multiple imputation 1.00 (1.92) 0.58 (0.16) 0.01 (0.42) 0.11 (1.09) −0.04 (0.08)

Ignorable intermittent missing data

Highest frequencyb 0.48 (1.12) 0.60 (0.11) −0.04 (0.32) −0.12 (0.46) −0.13 (0.07)

LVCFc 0.20 (1.03) 0.70 (0.12) −0.19 (0.36) −0.57 (0.51) −0.15 (0.08)

Multiple imputation 1.48 (2.00) 0.59 (0.13) −0.19 (0.39) 0.28 (0.60) −0.08 (0.10)

Informative intermittent missing data

Highest frequencyb 0.48 (0.71) 0.42 (0.08) −0.03 (0.28) 0.00 (0.31) −0.20 (0.06)

LVCFc 0.78 (1.23) 1.00 (0.16) 0.11 (0.37) −0.36 (0.53) −0.09 (0.07)

Multiple imputation 1.20 (1.61) 0.58 (0.15) 0.00 (0.44) −0.23 (0.84) −0.10 (0.07)

a Random coefficient analysis with only a random intercept.
b Highest frequency is the category with the highest frequency.
c LVCF is the last value carried forward.

on missing datasets and imputed datasets are another illustration of the
instability of longitudinal analysis with dichotomous outcome variables.

10.6.4 Comments
It should be noted that in the foregoing examples only a few imputation
methods have been illustrated, whereas many more models for imputation
are available. The multiple imputation methods were, for instance, limited
to (relatively) simple models and (only) five replications of the imputed
values. One should be aware of these limitations when evaluating the res-
ults of the different imputation methods. Another important issue is that
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the choice of dataset for the example partly determines the performance of
the different imputation techniques. For instance, the stronger the relation-
ship between the predictor variables and the outcome variable Y , the better
the imputation methods using these predictor variables will behave. When
the outcome variable Y does not change very much over time, the perform-
ance of longitudinal imputation methods using the information of Y at
earlier time-points will be better. In general, one should be aware of the
choices that have been made when evaluating the results of the examples
illustrating the different imputation methods.
It has been argued that using imputations for missing data results in a

decrease in variability of that particular variable. In theory, this is quite
obvious for the mean of series and the hot-deck approach, but a decrease
in variability is also a problem in the regression approaches, in which all
imputed values lie exactly on the estimated regression line. To overcome
this problem, a value can be imputed that is randomly chosen from a range
of values, for instance from the normal distribution around the predicted
meanvalue (as in themultiple imputation example for a continuousoutcome
variable).
In theory, themultiple imputationmethod is themost elegant solution for

the imputation of missing data. However, the performance of the multiple
imputation method is highly dependent on the chosen model for missing
data. In the example, the results derived from the multiple-imputed dataset
showed no difference in regression coefficients compared to the single-
imputed datasets. The difference was found in ‘better’ (i.e. higher) standard
errors of the regression coefficients. It is possible that if more sophisticated
models for missing data were used, the performance of the ‘multiple im-
putation’ method would be better, in such a way that the point estimates
would be closer to the point estimates derived from the complete dataset.
However, this is highly questionable. With specific software, such as SO-
LAS (1997), NORM (1999), and the SAS procedure MI (SAS Institute Inc.,
2001), more complicated models for missing data can be used for multiple
imputation. It is also argued that with the multiple imputation method, the
uncertainty of the model for missing data can be added to the estimation.
This can be done by taking the imputations of missing data from different
models of missing data instead of from only one model (see, for instance,
Rubin, 1996).
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10.7 Alternative approaches

In Sections 10.5 and 10.6, several imputation methods that can be used to
replace missing data have been discussed. Replacing missing data is, how-
ever, not the only solution to the problem of missing data. Many alternative
approaches are suggested. In the field of epidemiology, it is often suggested
that a GEE analysis should be performed, correcting for missing data by
adding a dummy variable (missing versus not missing) to the statistical
model. This would lead to a less biased estimation of the regression coef-
ficients (e.g. Haan et al., 1999). However, it is questionable whether this
approach is very useful. Greenland and Finkle (1995), for instance, caution
against indicators for missing data on covariates, and perhaps similar warn-
ings may apply to indicators for missing data on the outcome variable.
A different approach, that is suitable for experimental studies, is suggested

by Shih andQuan (1997). They suggest combining the results of twoanalyses:
(1) comparison of the outcome variable between the groups analysed for
the subjects with complete data and (2) comparison of the percentage of
outcome-related drop-outs between the groups analysed. The p-values of
these twoanalyses canbe combined to give the p-value for the ‘real’ difference
between the groups.
In the literature, many other alternative approaches are suggested (e.g.

Little, 1993, 1994; Fitzmaurice et al., 1994; Hogan and Laird, 1997;
Molenberghs et al., 1998; Kenward, 1998; Kenward and Molenberghs, 1999;
Chen et al., 2000; Verbeke andMolenberghs, 2000; Sun and Song, 2001), but
unfortunatelymost of them are very technical and difficult to understand for
non-statisticians. Little (1995) provides an extensive overview of modelling
drop-out mechanisms, but this review is also rather technical.

10.8 Conclusions

For continuous outcome variables, the use of imputation methods is
recommendedwhenMANOVAfor repeatedmeasurements is used to analyse
a longitudinal dataset with missing data. When more sophisticated meth-
ods (i.e. GEE analysis or random coefficient analysis) are used to analyse
a longitudinal dataset with missing data, no imputations at all may be
better than applying any of the imputation methods. If a decision is made to
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impute missing values, longitudinal methods are generally preferred above
cross-sectional methods. In the example dataset presented in this chapter,
the more refined multiple imputation method of imputing missing values
did not lead to any difference in the point estimates, compared to the single
imputation techniques. The estimated standard errors were higher in the
datasets with missing values than in the complete dataset, which certainly
seems to reflect uncertainty in estimation caused by imputingmissing values.
For dichotomous outcome variables, it is recommended that there should

be no missing values! The results of the analysis of both incomplete datasets
and datasets with imputed values are (highly) unpredictable, and should be
interpreted with the utmost caution.
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Tracking

11.1 Introduction

In the epidemiological literature, tracking is used to describe the relative
stability of the longitudinal development of a certain outcome variable Y .
There is no single widely accepted definition of tracking, but the follow-
ing concepts are involved: (1) the relationship (correlation) between early
measurements and measurements later in life, or the maintenance of a
relative position within a distribution of values in the observed population
over time, and (2) the predictability of future values by early measurements
(Ware andWu, 1981; Twisk et al., 1994). In epidemiology, tracking is mainly
used in the assessment of risk factors for chronic diseases (Clarke et al., 1978;
Lauer et al., 1986; Hibbert et al., 1990; Porkka et al., 1991: Lee et al., 1992;
Beunen et al., 1992; Casey et al., 1992; Twisk et al., 1997, 1998a, 1998b, 2000).
The early detection of risk factors can lead to the possibility of early treat-
ment. In this respect, it is important to estimate the stability of a certain risk
factor over time: ‘What is the relationship between measurements of risk
factors early in life and values of the same risk factors at a later date?’, ‘How
predictive are early measurements for values later in life?’ There are many
different ways to analyse tracking, and in this chapter a summary will be
given of the (basic) methods of assessment.

11.2 Continuous outcome variables

When there are only two measurements, the simplest way to assess track-
ing or stability is to calculate a Pearson correlation coefficient. The Pearson
correlation coefficient is only suitable when both Y at t = 1 and Y at t = 2
are normally distributed. When the data are not normally distributed,
Spearman’s rank correlation coefficient (i.e. the Pearson correlation
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coefficient calculated for rank numbers of the original variables) can be used
for tracking.
When there are more than two longitudinal measurements, the problem

with using a simple Pearson correlation coefficient for tracking is that it
does not use all the available data, or that several correlation coefficients are
needed to describe tracking over the entire longitudinal period. When Y at
t = 1 to Y at t = T are all normally distributed with equal variances and
covariances, a possible solution to this problem is to calculate the intraclass
correlation coefficient (ICC), which is (usually) defined as:

ICC =
(
σ 2
B − σ 2

W

)

(
σ 2
B + σ 2

W

) (11.1)

where σ 2
B is the between-subjects variance, and σ 2

W is the within-subject
variance.
When Y at t = 1 to Y at t = T are not normally distributed, Kendall’s

coefficientof concordance (W) canbecalculated.This coefficient is ameasure
of stability based on rank numbers of the outcome variable (i.e. on changes
in individual rankings over time).

W = 12

T 2 N(N + 1)(N − 1)

N∑

i=1

[
Ri − T(N + 1)

2

]2

(11.2)

where T is the number ofmeasurements, N is the number of subjects, and Ri

is the sum of all rankings at all measurements for individual i .
Kendall’sW can take values between 0.0 and 1.0, and indicates the degree

of association between the rankings at each of the repeated measurements.
However, the interpretation of W is quite complicated, because when W is
calculated for random numbers the coefficient is not equal to zero, but to a
positive value which depends on the number of time-points T .
Foulkes and Davis (1981) have developed a tracking coefficient γ for lon-

gitudinal studieswhenT ≥ 2. In their approach, the observed values for each
subject are replaced by the predicted values obtained from individual regres-
sion analyses between the outcome variable Y and time. These regression
functions can be either linear (straight lines) or more complicated, and can
be seen as individual growth lines or curves. The Foulkes and Davis tracking
coefficientγ , also knownas the growth separation index, is used todetermine
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the probability that two subjects selected at random will have growth lines
or curves that do not cross during the time period under consideration. This
probability is simply the number of growth lines or curves in the population
that do not cross, divided by the number of ways in which two lines or curves
can be randomly selected from the population:

γ [t1, tT ] = 1 −
N∑

i=1

mi

N(N − 1)
(11.3)

where mi is the number of times the growth line or curve of a particu-
lar subject crosses at least once with the growth lines or curves of other
subjects during the observed time period [t1, tT ], and N is the number
of subjects.
As for all other tracking indices, thevalueof γ highlydependson the length

of the observed time period. The coefficient γ can take values between 0.0
and 1.0. A value of 0.0means that every individual line or curve crosses every
other individual lineor curve at least once; a valueof 1.0 indicates thatnoneof
the individual lines or curves cross; a value >0.5 indicates tracking, because
two subjects chosen at random would be more likely to have lines or curves
that donot cross.When the individual response patterns are simply drawnby
connecting the successive time-points, without assuming any mathematical
growth model, this procedure would be based on rank numbers. Although
there are no assumptions about the form of the lines or curves, the simplicity
of the model used to describe the data is very important. In other words:
the simpler the model used to describe the data, the higher is the value of
the tracking coefficient. Another problem in interpreting γ is that subjects
at the extremes of the distribution are less likely to have lines that cross the
lines or curves of other subjects than subjects who have lines or curves near
themean line or curve. If measurements aremade at only two points in time,
and therefore the lines or curves for each subject are straight lines, then the
Foulkes and Davis tracking coefficient γ is equivalent to Spearman’s rank
correlation coefficient.
McMahan (1981) has developed a tracking coefficient τ , which is also

based on all the available data. The coefficient is calculated under the as-
sumption that all repeated measurements of outcome variable Y are nor-
mally distributed. The McMahan tracking coefficient, which is also known
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as the growth constancy index, is calculated as follows:

τ = 1 − 1

(N − 1)(T − 1)

N∑

i=1

S2i (11.4a)

S2i =
T∑

t=1

(Yit − Ȳ i )
2

(11.4b)

Ȳ i = 1

T

T∑

t=1

Yit (11.4c)

where N is the number of subjects, T is the number of repeated measure-
ments, and Yit is the observation for individual i at time-point t.
Basically, τ is nothing more than the average value of the (T(T − 1))/2

Pearson correlation coefficients, where T is the number of times a value is
measured. If τ has a value of 1.0, there is perfect tracking for that variable.
If τ has a value of 0.0, there is no tracking for that variable. Like the Pearson
correlationcoefficient,McMahan’sτ can takenegativevalues,which indicates
a reversal of the values between two observed time-points.
Another possibility is to use longitudinal principal component (LPC) ana-

lysis to assess tracking in a certain continuous outcome variable Y over time.
Assuming a linear relationship between the repeated measurements, LPC
analysis starts by finding the linear combination of the same variable meas-
ured on different occasions, which accounts for the maximum amount of
variance. This linear combination is called thefirst principal component. The
percentage of variance (R2) accounted for by the first principal component
can be interpreted as a tracking coefficient.
Oneof the latest innovations in the assessmentof tracking is amore general

method in which the tracking coefficient is calculated with the following
statistical model:

Yit = β0 + β1Yit1 + β2t +
J∑

j = 1

β3j Xijt +
K∑

k=1

β4k Zik + εit (11.5)

where Yit are observations for subject i at time t, β0 is the intercept, Yit1

is the initial (first) observation for subject i , β1 is the regression coeffi-
cient used as tracking coefficient, t is time, β2 is the regression coefficient
for time, Xijt is the time-dependent covariate j of individual i , β3j is the
regression coefficient for time-dependent covariate j , J is the number of
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time-dependent covariates, Zik is the time-independent covariate k for sub-
ject i , β4k is the regression coefficient for time-independent covariate k, K is
the number of time-independent covariates, and εit is the ‘error’ for subject
i at time-point t.
To calculate a tracking coefficient for a certain outcome variable Y , the

value of the initial measurement at t1(Yit1) is regressed on the entire longit-
udinal development of that variable from t2 to tT . The relationships between
the initial value at t1 and the values from t2 to tT are analysed simultaneously,
resulting in one single regression coefficient (β1). The standardized value of
this coefficient can be interpreted as a longitudinal correlation coefficient,
i.e. the tracking coefficient.
The regression coefficient (β1) can easily be standardized by applying

Equation (11.6):

βs = βsd(X)

sd(Y )
(11.6)

where βs is the standardized regression coefficient, β is the non-standardized
regression coefficient, sd(X) is the standard deviation of the predictor vari-
able, and sd(Y) is the standard deviation of the outcome variable.
Although this tracking coefficient can range between −1 and +1, assum-

ing the correlations between the repeated observations to be positive, this
tracking coefficient takes values between 0 and 1. The statistical model is
comparable to the model described to analyse the longitudinal relationship
between a continuous outcome variable and one ormore predictor variables
(see Section 4.4, Equation (4.3)). The only difference is that the initial value
of the outcome variable (Yit1) is one of the predictor variables. The regression
coefficient of interest (β1) can be estimated in exactly the same way as has
been described before, i.e. by means of GEE analysis or random coefficient
analysis. The way the tracking coefficient is estimated according to Equation
(11.5) is illustrated below:
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One of the greatest advantages of this model is the fact that all longitudinal
data are used to calculate one tracking coefficient. Furthermore, this method
is suitable for highly unbalanced longitudinal datasets, i.e. a different number
of repeated measurements for each subject and unequally spaced time inter-
vals. A third advantage is the possibility to correct for both time-dependent
(Xitj) and time-independent covariates (Zik). These covariates can be con-
tinuous, as well as dichotomous or categorical. A comparable approach is
the use of an autoregressive model (see Section 5.2.3, Equation (5.3)). The
autoregression coefficient can be interpreted as a tracking coefficient. How-
ever, the interpretation is somewhat different from the tracking coefficient
estimated with Equation (11.5), because the autoregression coefficient de-
scribes the relationship between the value of a certain outcome variable Y
at time-point t and the value of outcome variable Y at t − 1, while the β1

coefficient in the trackingmodel describes the relationship between the value
of Y at t1 and the total development of Y from t2 to tT . The same autore-
gression coefficient can be estimated with the use of structural equation
models (LISREL). The LISREL approach is particularly suitable in situ-
ations when a so-called latent (unobserved) variable is analysed (Jöreskog
and Sörbom, 1993, 2001). However, these models are sometimes difficult
to fit, and the estimations of the coefficients are rather unstable in smaller
populations.

11.3 Dichotomous and categorical outcome variables

The simplest way to calculate tracking for dichotomous and categorical out-
come variables is to calculate the proportion of subjects in a specific group
who stayed in the same group at one or more follow-up measurement(s).
If that proportion is higher than the expected proportion when the subjects
are randomly divided into each group (e.g. more than 50% for dichotomous
variables, more than 25% for four groups, more than 20% for five groups,
etc.), the population is said to track for that particular variable.
The same procedure can be carried out for continuous outcome variables,

which are divided into percentile groups or into groups according to pre-
determined cut-off points. By this division, the continuous outcome variable
is changed into a dichotomous or categorical outcome variable. Based on
these proportions, two corresponding coefficients can be calculated, both of
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initial measurement follow-up measurement
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Figure 11.1. ‘Predictive value’: a% divided by (100− a)%.

initial measurement follow-up measurement
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Figure 11.2. ‘Relative probability’: a% divided by b%.

which are only suitable in research situations where T = 2. The ‘predictive
value’ is calculated as the proportion of subjects who stayed in a certain
group during follow-up, divided by the proportion of subjects who moved
to other groups (Figure 11.1), and the ‘relative probability’ is calculated as the
proportionof subjectswhowere in a certain group at the initialmeasurement
aswell as at the follow-upmeasurement,dividedby theproportionof subjects
who moved from one of the other groups at the initial measurement to
that group at the follow-up measurement (Figure 11.2). The term ‘relative
probability’ is somewhatmisleading; it is not really a probability, because the
value can be greater than one.
Another interesting, possible way to assess tracking for dichotomous and

categorical outcome variables is Cohen’s kappa (κ), which can be calculated
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in longitudinal studies where T ≥ 2. Kappa is calculated as shown in
Equation (11.7):

κ = p̄ − p̂

1 − p̂
(11.7a)

p̄ = 1

N

N∑

i=1

pi (11.7b)

pi = 1

T(T − 1)

G∑

g=1

nig (nig − 1) (11.7c)

p̂ =
G∑

g=1

p2g (11.7d)

pg = 1

NT

N∑

i=1

nig (11.7e)

where p̄ is the expected proportion of stability, N is the number of sub-
jects, p̂ is the observed proportion of stability, G is the number of groups
(i.e. two in the case of a dichotomous outcome variable), T is the num-
ber of measurements, and nig is the number of times subject i is in the
g group.
The number of times that each individual subject is in each specific group

is counted and compared with the value that is expected if the subjects are
randomly assigned to the different groups at each measurement. Generally,
kappa ranges from 0.0 to 1.0, and if kappa >0.75, it is considered that
the variable tracks well. If kappa <0.40, then the variable is considered
to track poorly, and if the kappa value lies between these two, then there
is moderate tracking for the variable of interest. However, these thresholds
are rather arbitrary, and as in the case of all other tracking coefficients,
the magnitude of kappa is highly influenced by the length of the meas-
urement period. When kappa is calculated for categorical variables, one
of the problems is that all ‘movements’ between groups are weighted equally,
irrespective of the length of the ‘movement’. To overcome this drawback,
Cohen (1968) also developed a weighted kappa, in which the lengths of
the movements are weighted unequally (Equation (11.8)). Unfortunately,
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the weighted index can only be used in situations when there are only two
measurements.

κ = p̄w − p̂w
1 − p̂w

(11.8a)

p̄w =
G∑

i=1

G∑

j=1

wij pij (11.8b)

p̂w =
G∑

i=1

G∑

j=1

wij pi(t1) p j (t2) (11.8c)

wij = 1 − |i − j |
G − 1

(11.8d)

where p̄w is the (weighted) expected proportion of stability, p̂w is the
(weighted) observed proportion of stability, pii is the proportion of sub-
jects in a certain group at t = 1 and in the same group at t = 2, and G is the
number of groups (i.e. categories).
Comparable to the method that has been described for continuous out-

come variables, a longitudinal logistic regression analysis can also be used to
assess tracking for a dichotomous outcome variable, for which the following
statistical model can be used:

ln

[
Pr (Yit = 1)

1 − Pr (Yit = 1)

]
= β0 + β1Yit1 + β2t +

J∑

j=1

β3 j Xitj +
K∑

k=1

β4k Zik

(11.9a)

or in another notation

Pr (Yit = 1) = 1

1+ exp

[

−
(

β0 +β1Yit1 + β2t+
J∑

j=1
β3 j Xitj+

K∑

k=1
β4k Zik

)]

(11.9b)

where Pr(Yit = 1) is the probability that the observations at t2 to tT of subject
i equal 1 (where T is the number of measurements and 1 means that subject
i belongs to the group of interest), Yit1 is the initial (first) observation of
subject i at t1, β0 is the intercept, β1 is the regression coefficient used as
trackingcoefficient, t is time,β2 is the regressioncoefficient for time, Xitj is the
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time-dependent covariate j for subject i , β3 j is the regression coefficient for
time-dependent covariate j , J is the number of time-dependent covariates,
Zik is the time-independent covariate k for subject i , β4k is the regression
coefficient for time-dependent covariate k, and K is the number of time-
independent covariates.
This model is more or less the same as the model described to analyse

the relationship between a dichotomous outcome variable and one or more
predictor variables (see Chapter 6, Equations (6.6a) and (6.6b)). The differ-
ence is that in the tracking model the probability of belonging to a group
from t2 to tT is related to the initial membership of the group at t1(Yit1).
Furthermore, the model has the same advantages as have been described for
themodel used to calculate the tracking coefficients for continuous outcome
variables (Equation (11.5)). The coefficient of interest is β1, because this co-
efficient reflects the relationship between belonging to a group at t1 and the
development of that particular group from t2 to tT , which is in fact the def-
inition of tracking. Like in simple logistic regression, this coefficient (β1) can
be transformed into an odds ratio (exp(β1)), which gives the magnitude of
the ‘odds’ of a subject belonging to a group at t1, regarding the development
of the subject’s group status from t2 to tT , relative to the ‘odds’ of a sub-
ject not belonging to that group at t1. As for continuous outcome variables,
the regression coefficients of the tracking model can be estimated with GEE
analysis as well as with random coefficient analysis, although GEE analysis
is preferred because it provides a so-called ‘population-averaged’ estimation
of the regression coefficients.
For the estimation of tracking for categorical outcome variables, longit-

udinal polytomous logistic regression analysis can be used, while for the
estimation of tracking for a ‘count’ outcome variable, longitudinal Poisson
regression canbeused (see Sections 7.1.5.3 and7.2).Both analyses canuse the
same extension as was described for continuous and dichotomous outcome
variables, i.e. with the initial value of the categorical or ‘count’ outcome
variable at t = 1 as one of the predictor variables.

11.4 Example

In the examples, a distinction will be made between research situations with
only two measurements and situations with more than two measurements.
In thefirst example, thefirst and the lastmeasurementsof the exampledataset
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Table 11.1. Tracking coefficientsa calculated for a continuous outcome
variable Y measured twice in time (at t = 1 and t = 6)

Pearson’s correlation coefficient 0.59

Spearman’s correlation coefficient 0.63

Intraclass correlation coefficientb 0.32 (0.17–0.46)

Kendall’s W 0.37

McMahan’s tracking coefficient 0.59

Principal component analysis 0.79

Stability coefficientb 0.59 (0.45–0.72)

a The Foulkes and Davies tracking coefficient cannot be calculated with any of the

major commercial software packages, so this coefficient is left out of the example.
b The 95% confidence interval is given in parentheses.

will be considered, while in the latter example, all six measurements of the
example dataset will be considered.

11.4.1 Two measurements
Table 11.1 shows the results of the different tracking coefficients calculated
for the continuous outcome variable Y . Although all coefficients reported
in Table 11.1 are intended to measure the same construct and are applied to
the same dataset, it is obvious that the magnitude of the tracking coefficient
highly depends on the method used.
For a dichotomous outcome variable with only two measurements, all

tracking coefficients can be calculated from the following 2 × 2 table:

t6

1 2 Total

t1 1 80 17 97

2 18 32 50

Total 98 49 147

Table 11.2 shows the tracking coefficients calculated for a dichotomous
outcome variable. From the results it can be seen that (comparable to the
situation for continuous outcome variables) the magnitude of the tracking
coefficient highly depends on the method used.
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Table 11.2. Tracking coefficients calculated for a dichotomous outcome
variable Y measured twice in time (at t = 1 and t = 6)

Proportion of stability 76%

Predictive valueb 1.78

Relative probabilityb 3.66

Kappa 0.47

Stability coefficient (odds ratio)a 8.37 (3.83–18.24)

a The 95% confidence interval is given in parentheses.
b Based on the second group.

Table 11.3. Tracking coefficients calculated for a categorical outcome
variable Y measured twice in time (at t = 1 and t = 6)

Proportion of stability 55%

Predictive valueb 1.78

Relative probabilityb 3.66

Kappa 0.33

Weighted kappaa 0.34

a Weighted kappa is not given in most standard software packages.
b Based on the second group.

For a categorical variable with two repeated measurements over time, the
tracking coefficients canbe calculated directly from the following 3 × 3 table:

t6

1 2 3 Total

t1 1 30 15 3 48

2 16 19 14 49

3 3 15 32 50

Total 49 49 49 147

Table 11.3 shows the tracking coefficients for the categorical outcome
variable Y , measured at t = 1 and at t = 6. When the results from Tables
11.2 and 11.3 are compared, it can be seen that themagnitude of the tracking
coefficient depends not only on the method used, but also on the way the
outcome variable is categorized (see Section 11.5.3).
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Table 11.4. Tracking coefficientsa calculated for a continuous outcome
variable Y measured six times using all available data

Intraclass correlation coefficientb 0.54 (0.47–0.62)

Kendall’s W 0.34

McMahan’s tracking coefficient 0.70

Principal component analysis 0.75

Stability coefficientb, c 0.60 (0.53–0.67)

a The Foulkes and Davies tracking coefficient cannot be calculated with any of the

major commercial software packages, so this coefficient is left out of the example.
b The 95% confidence interval is given in parentheses.
c Estimated with GEE analysis.

Table 11.5. Tracking coefficients calculated for a dichotomous outcome
variable Y measured six times using all available data

Kappaa 0.51

Stability coefficient (odds ratio)b 8.92 (5.13–15.51)

a In a situation with more than two measurements, kappa has to be calculated manually.
b Estimated with GEE analysis; the 95% confidence interval is given in parentheses.

11.4.2 More than two measurements
In the following examples, all six measurements are used to estimate the
tracking coefficients. Table 11.4 shows the results of the different tracking
coefficients calculated for the continuous outcome variable Y. When the
tracking coefficients are estimated using all available longitudinal data, most
coefficients are similar to those estimated using only the first and last meas-
urements (see Table 11.1). Some of the coefficients are slightly higher when
all longitudinal data are used, which is expected because information re-
garding shorter time periods is used in the estimation. Furthermore, the
precision of the estimates is greater in the situation when all available data
are used,which is expressed in the smaller confidence intervals of the tracking
coefficients.
Table 11.5 shows the tracking coefficients calculated for a dichotomous

outcome variable, and Table 11.6 shows the tracking coefficient calculated
for a categorical outcome variable. In both situations, all available data (i.e.
six measurements) are used to estimate the coefficients. For these kinds of
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Table 11.6. Tracking coefficient calculated for a categorical
outcome variable Y measured six times using all available data

Kappaa 0.41

a In a situation with more than two measurements, kappa has to be

calculated manually.

outcome variables, the comparison between tracking coefficients estimated
with all availabledata and tracking coefficients estimatedwithonly twomeas-
urements is the same as has been described for continuous outcome vari-
ables. Furthermore, the magnitude of the tracking coefficients (i.e. kappa)
depends on the cut-off value of the categorization, a phenomenonwhichwas
already observed in the situation when tracking coefficients were calculated
using only two measurements over time.

11.5 Comments

11.5.1 Interpretation of tracking coefficients
One of the major problems in tracking analysis is the interpretation of the
results. Conclusions about the tracking phenomenon are mainly based on
the significance of the tracking coefficient. The importance of a significance
test for the tracking coefficient is, however, very doubtful. This is primarily
due to the fact that the statistical significance of the tracking coefficient is
based on the hypothesis that the tracking coefficient equals zero. When a
tracking coefficient differs significantly from zero, this does not imply that
the tracking coefficient for that particular variable is good. Significantly dif-
ferent from zero does not provide any information about the magnitude
of the coefficient. Secondly, it is important to realize that the magnitude of
every tracking coefficient highly depends on the length of the time interval.
A high tracking coefficient calculated over a short time period is not ne-
cessarily ‘better’ than a lower tracking coefficient calculated over a much
longer time period. The same problem in interpretation arises when authors
wish to evaluate their tracking coefficient by stating that if their tracking
coefficient is above a certain value the population tracks for that variable.
For instance, kappa >0.75 indicates tracking, but if the index is calculated
over a very short time period, it does not indicate anything. In evaluating
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tracking coefficients, the magnitude of the point estimate, the width of the
95% confidence interval of the coefficient (which gives information about
the precision of the estimate) and the time period over which the coefficient
is calculated have to be considered.
Moreover, one must take into account the fact that tracking coefficients

are highly influenced by measurement error. If the assessment of a cer-
tain outcome variable Y is not very accurate, i.e. if the reproducibility of
the measurement of variable Y is rather low, this will probably lead to
low tracking coefficients. Low reproducibility of the measurement instru-
ment should be taken into account when interpreting the magnitude of the
tracking coefficients.

11.5.2 Risk factors for chronic diseases
One of themajor issues that tracking analysis is used to evaluate is the longit-
udinal development of risk factors for chronic diseases. Before interpreting
the tracking coefficient or predictive value, one has to be aware of the fact
that the maintenance of a relatively high value of a risk factor over time may
not be as important in predicting the development of a disease as a certain
increase in this value. That is probably the reason why sometimes not only
the proportion of subjects whomaintained a certain rank order is calculated,
but also the proportion of subjects with a rising rank order (see for instance
Lauer et al., 1986). Somewhat related is the fact that tracking concerns the
relative position of a certain individual within a group of subjects over time.
When tracking is high for a certain variable over time, this does not neces-
sarily mean that the absolute level of that variable does not change over time.
When for each individual in a particular population the value of a certain
variableY increaseswith the sameamount, the stability of that variable is very
high. In other words, the interpretation of the tracking coefficient is rather
relative.

11.5.3 Grouping of continuous outcome variables
If a continuous outcome variable Y is arbitrarily divided into sub-groups
(e.g. tertiles or quartiles), the magnitude of the tracking coefficient highly
depends on the (arbitrary) decision about how the population is divided
(see Section 11.4). This makes these approaches very troublesome in assess-
ing the tracking phenomenon. Furthermore, by dividing the population into
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sub-groups, a lot of information about the data is lost. For instance, subjects
can change position within their original (percentile) group without influ-
encing the tracking coefficient, whereas a minor shift at the borders between
two (percentile) groups will influence tracking coefficients.

11.6 Conclusions

It is not the intention of this chapter to recommend a ‘perfect’ tracking coeffi-
cient or a ‘perfect’model to assess tracking. Themain purpose of this chapter
is merely to draw attention to some important aspects of tracking analysis.
On theonehand it is preferable touse a tracking coefficient that is as simple

as possible. However, on the other hand, tracking is part of the description
of the longitudinal development of a certain variable and, therefore, the ap-
proachmust include the possibility of using all the available longitudinal data
and, if necessary, of controlling for possible confounding variables. Finally
it should be kept in mind that the tracking coefficient must be easy to inter-
pret, and that it is very dangerous to give strict rules for the interpretation of
tracking coefficients, in particular because the value of a coefficient depends
highly on the time period under consideration.
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Software for longitudinal data analysis

12.1 Introduction

In the foregoing chapters many research questions have been addressed and
many techniques for the analysis of longitudinal data have been discussed.
In the examples, the ‘simple’ statistical techniques were performed with
SPSS, while the GEE analyses were performed with SPIDA, and the ran-
dom coefficient analyses with STATA. Until recently, with the widely used
software package SPSS there were not many possibilities of performing
sophisticated longitudinal data analysis. However, with the release of SPSS
version 11, random coefficient analysis for continuous outcome variables
became available. This chapter provides an overview of a fewmajor software
packages (i.e. STATA, SAS, S-PLUS, SPSS and MLwiN) and their ability to
perform sophisticated longitudinal data analysis. In this chapter, only GEE
analysis and random coefficient analysis will be discussed. MANOVA for
repeated measurements can be performed with all major software pack-
ages, and can usually be found under the repeated measurements option of
the generalized linear model (GLM) or as an extension of the (M)ANOVA
procedure. The emphasis of this overview lies on the output and syntax of
the sophisticated longitudinal analysis in the different software packages, and
especially on comparison of the results obtained with the various different
packages. In this overview, only analysis with a continuous and a dichotom-
ous outcome variable will be discussed in detail.

12.2 GEE analysis with continuous outcome variables

12.2.1 STATA
Output 12.1 shows the results of a linear GEE analysis (i.e. with a continuous
outcome variable) performed with STATA. The first part of the output
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Output 12.1. Results of a linear GEE analysis performed with STATA

GEE population-averaged model Number of obs = 882

Group variable: id Number of groups = 147

Link: identity Obs per group: min = 6

Family: Gaussian avg = 6.0

Correlation: exchangeable max = 6

Wald chi2(5) = 208.03

Scale parameter: 0.5586134 Prob > chi2 = 0.0000
--------------------------------------------------------------------------
ycont Coeff Std. Err. z P > |z| [95% Conf. Interval]
--------------------------------------------------------------------------

x1 -0.0237166 0.276071 -0.086 0.932 -0.5648058 0.5173727

x2 0.1109326 0.0201324 5.510 0.000 0.0714738 0.1503914

x3 -0.1108512 0.0584746 -1.896 0.058 -0.2254592 0.0037569

x4 0.1008476 0.1216047 0.829 0.407 -0.1374932 0.3391885

time 0.1084771 0.0111322 9.744 0.000 0.0866583 0.1302958

cons 3.616689 0.6729413 5.374 0.000 2.297748 4.93563

provides general information regarding the analysis performed. It can be
seen that an identity link is used, which indicates that a linear GEE analysis
has been performed. The latter can also be seen from ‘Family: Gaussian’.
Furthermore, the output shows that an exchangeable correlation structure
was used, and that the scale parameter is 0.5586134. On the right-hand side
of the general information a Wald statistic and the corresponding p-value
are shown (Wald chi2(5) and prob > chi2). This refers to the generalized
Wald statistic, which shows the significance of the combination of the five
predictor variables in the model (i.e. X1 to X4 and time). The second part
of the output shows the regression coefficients, the standard errors, the
z-value (i.e. the regression coefficient divided by its standard error), the
corresponding p-value and the 95% confidence interval of the regression
coefficient.
The syntax needed to obtain Output 12.1 is very simple:

xtgee ycont x1 x2 x3 x4 time, i(id) corr(exch)

First the STATA procedure is specified (i.e. xtgee), directly followed by the
outcome variable and the predictor variables. After the comma, additional
information is supplied, i.e. the subject identifier (id) and the ‘working’
correlation structure (exch).
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It shouldbenoted that inSTATAthedefaultprocedure for the estimationof
the standard errors is so-called ‘model based’. This is rather strange, because
it is generally accepted that the ‘robust’ estimation procedure of the standard
errors is preferred1 (Liang and Zeger, 1986). To obtain ‘robust’ standard
errors the following syntax can be used:

xtgee ycont x1 x2 x3 x4 time, i(id) corr(exch) robust

The major difference between the ‘model-based’ and the ‘robust’ estimation
procedure occurs when an independent correlation structure is used. In
fact, with a ‘model-based’ estimation procedure, the results obtained from
the GEE analysis with an independent correlation structure are exactly the
same as the results obtained from a naive linear regression analysis in which
the dependency of the observations is ignored.

12.2.2 SAS
Within SAS, theGENMODprocedure canbeused toperformaGEEanalysis.
The output of the GENMOD procedure is rather long, and includes for
instance the initial parameter estimates. Output 12.2 shows a section of the
output of a linear GEE analysis performed with the GENMOD procedure.
From the output it can be seen that a linear GEE analysis has been per-

formed (i.e. a normal distribution, and an identity link function). Further-
more, it can be seen that an exchangeable correlation structure is used. At
the end of the output, the parameter estimates are given, i.e. the regression
coefficient, the standard error, the 95% confidence interval of the regression
coefficient, the z-value (again obtained from the regression coefficient di-
vided by its standard error) and the corresponding p-value.
The syntax needed to perform aGEE analysis with the GENMODproced-

ure is slightly more complicated than the syntax for STATA:

proc genmod data=long.x;
class id;
model ycont = x1 x2 x3 x4 time;
repeated subject=id/type=exch;
run;

Each SAS procedure starts with the procedure specification (proc genmod)
and ends with a run statement. The class statement in SAS is needed to

1 ‘Robust’ estimation of the standard errors is also known as ‘Huber’ or ‘sandwich’ estimation.
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Output 12.2. Results of a linear GEE analysis performed with the GENMOD
procedure in SAS

The GENMOD Procedure

Model Information

Data Set LONGBOOK. FIRST

Distribution Normal

Link Function Identity

Dependent Variable YCONT OUTCOME VARIABLE Y

Observations Used 882

GEE Model Information

Correlation Structure Exchangeable

Subject Effect ID (147 levels)

Number of Clusters 147

Correlation Matrix Dimension 6

Maximum Cluster Size 6

Minimum Cluster Size 6

Algorithm converged

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept 3.6348 0.6793 2.3035 4.9662 5.35 <0.0001

TIME 0.1076 0.0139 0.0804 0.1348 7.76 <0.0001

X1 -0.0302 0.2737 -0.5666 0.5063 -0.11 0.9123

X2 0.1107 0.0228 0.0660 0.1554 4.85 <0.0001

X3 -0.1135 0.0607 -0.2324 0.0055 -1.87 0.0616

X4 0.0991 0.1305 -0.1566 0.3548 0.76 0.4475

indicate that the subject identifier is a categorical variable (class id). In the
third line of the syntax the model to be analysed is specified (model ycont=
x1 x2 x3 x4 time), and in the fourth line the fact that the subjects are repeat-
edly measured (repeated subject=id), and that the correlation structure is
exchangeable (type=exch).

12.2.3 S-PLUS
GEE analysis cannot be performed in the regular S-PLUS software package.
However, a GEE procedure is available which can be implemented in the



245 GEE analysis with continuous outcome variables

Output 12.3. Results of a linear GEE analysis performed with S-PLUS

Model:

Link: Identity

Variance to Mean Relation: Gaussian

Correlation Structure: Exchangeable

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 3.63483468 0.67241365 5.4056528 0.67926759 5.3511087

X1 -0.03015058 0.27585764 -0.1092976 0.27371605 -0.1101528

X2 0.11070982 0.02007973 5.5135106 0.02282241 4.8509267

X3 -0.11345790 0.05830270 -1.9460145 0.06071048 -1.8688353

X4 0.09909445 0.12148692 0.8156800 0.13045478 0.7596077

TIME 0.10759108 0.01109887 9.6938770 0.01386447 7.7601995

Estimated Scale Parameter: 0.5565875

Number of Iterations: 4

Working Correlation

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 0.5630412 0.5630412 0.5630412 0.5630412 0.5630412

[2,] 0.5630412 1.0000000 0.5630412 0.5630412 0.5630412 0.5630412

[3,] 0.5630412 0.5630412 1.0000000 0.5630412 0.5630412 0.5630412

[4,] 0.5630412 0.5630412 0.5630412 1.0000000 0.5630412 0.5630412

[5,] 0.5630412 0.5630412 0.5630412 0.5630412 1.0000000 0.5630412

[6,] 0.5630412 0.5630412 0.5630412 0.5630412 0.5630412 1.0000000

S-PLUS main programme. Output 12.3 presents a section of the output of a
GEE analysis performed with S-PLUS.
The output of S-PLUS is comparable to what has been seen for STATA and

SAS. Firstly, some general information is shown (i.e. identity link, Gaussian
variance tomean relation and exchangeable correlation structure). Secondly,
the results of the analysis are presented. A distinction is made between the
‘naive’ estimation of the standard errors (which is equal to the ‘model-based’
estimation procedure) and the ‘robust’ estimation procedure (both intro-
duced in Section 12.2.1). Finally the scale parameter (i.e. 0.5565875) and the
exchangeable correlation (0.5630412) are presented.
The syntax needed to perform a GEE analysis in S-PLUS is as follows:

test.gee <- gee(YCONT ∼ X1 + X2 + X3 + X4 + TIME,
id=ID, data=long, family=gaussian, corstr="exchangeable")
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Table 12.1. Summary of the results (i.e. regression coefficients, standard
errors (in parentheses), and the scale parameter) of a linear GEE analysis
with an exchangeable correlation structure performed with different
software packages

SPIDAa STATAb SAS S-PLUS

X1 −0.02 (0.27) −0.02 (0.28) −0.03 (0.27) −0.03 (0.27)

X2 0.11 (0.02) 0.11 (0.02) 0.11 (0.02) 0.11 (0.02)

X3 −0.11 (0.06) −0.11 (0.06) −0.11 (0.06) −0.11 (0.06)

X4 0.10 (0.13) 0.10 (0.12) 0.10 (0.13) 0.10 (0.13)

Time 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01)

Scale parameter 0.75 0.56 0.74 0.56

a SPIDA was used in the examples in Chapter 4.
b The standard errors estimated in STATA are so-called ‘model-based’ standard errors;

when ‘robust’ standard errors are calculated the standard errors are exactly the same as

for the other packages.

The syntax starts with a typical S-PLUS statement, in which the output
of the GEE procedure is linked to an ‘object’ called test.gee (for details
see the S-PLUS manuals). After the GEE procedure specification, the out-
come variable and the predictor variables are given. After the comma, addi-
tional information has to be specified, i.e. the subject identifier (id=ID), the
dataset used (data=long), the distribution of the outcome variable (family=
gaussian), and the correlation structure (corstr=“exchangeable”).

12.2.4 Overview
Table 12.1 summarizes the results of a linear GEE analysis with an exchange-
able correlation structure performed with different software packages. From
Table 12.1 it can be seen that the results of a GEE analysis with a con-
tinuous outcome variable and an exchangeable correlation structure are
the same for all four software packages, and although the scale parame-
ters look different, they are also basically the same. With SPIDA and SAS
the standard deviation is reported, while STATA and S-PLUS provide the
variance.
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12.3 GEE analysis with dichotomous outcome variables

12.3.1 STATA
Output 12.4 shows the output of a logistic GEE analysis (i.e. with a dicho-
tomous outcome variable) with an exchangeable correlation structure per-
formed with STATA. The output of the logistic GEE analysis is comparable
to Output 12.1, in which the results of the linear GEE analysis were shown.
The difference is observed in the ‘logit link’ and the ‘binomial family’. Both
indicate that a logistic GEE analysis was performed. Furthermore, it should
be noted that (by default) the scale parameter is fixed at a value of one.

Output 12.4. Results of a logistic GEE analysis performed with STATA

GEE population-averaged model Number of obs = 882

Group variable: id Number of groups = 147

Link: logit Obs per group: min = 6

Family: binomial avg = 6.0

Correlation: exchangeable max = 6

Wald chi2(5) = 33.41

Scale parameter: 1 Prob > chi2 = 0.0000
--------------------------------------------------------------------------

ydich Coeff Std. Err. z P > |z| [95% Conf. Interval]

--------------------------------------------------------------------------

x1 0.2218124 0.7656789 0.290 0.772 -1.278891 1.722515

x2 0.3395295 0.0620721 5.470 0.000 0.2178703 0.4611886

x3 -0.1509501 0.1841475 -0.820 0.412 -0.5118726 0.2099725

x4 0.0841288 0.336263 0.250 0.802 -0.5749345 0.7431921

time -0.0766283 0.0351594 -2.179 0.029 -0.1455396 -0.0077171

cons -2.27018 1.870092 -1.214 0.225 -5.935493 1.395133

The syntax needed to perform a logistic GEE analysis in STATA is compar-
able to that needed to perform a linear GEE analysis, except for the indicators
that a dichotomous outcome variable is used (i.e. fam(bin) link(logit)):

xtgee ydich x1 x2 x3 x4 time,
i(id) fam(bin) link(logit) corr(exch)

Again, the standard errors are, by default, estimated by the ‘model-based’
procedure. This can be changed by adding ‘robust’ to the syntax:

xtgee ydich x1 x2 x3 x4 time, i(id) fam(bin) link(logit)
corr(exch) robust
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12.3.2 SAS
Output 12.5 shows a section of the output of a logistic GEE analysis with an
exchangeable correlation structureperformedwith theGENMODprocedure
in SAS. It is obvious that the output of a logistic GEE analysis with the
GENMOD procedure is comparable to the output of a linear GEE analysis.
The difference is the information in the first part of the output, where it is
mentioned that a ‘logit link’ is used with a ‘binomial distribution’, i.e. that a
logistic GEE analysis has been performed. It should be noted that the scale
parameter is set at a fixed value of one.

Output 12.5. Results of a logistic GEE analysis performed with the GENMOD procedure
in SAS

The GENMOD Procedure

Model Information

Data Set LONGBOOK. FIRST

Distribution Binomial

Link Function Logit

Dependent Variable YDICH DICHOTOMOUS OUTCOME VARIABLE Y

Observations Used 882

Probability Modelled Pr( YDICH = 1.00 )

GEE Model Information

Correlation Structure Exchangeable

Subject Effect ID (147 levels)

Number of Clusters 147

Correlation Matrix Dimension 6

Maximum Cluster Size 6

Minimum Cluster Size 6

Algorithm converged

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept -2.2103 1.9173 -5.9681 1.5475 -1.15 0.2490

TIME -0.0765 0.0372 -0.1494 -0.0036 -2.06 0.0396

X1 0.1964 0.7575 -1.2882 1.6811 0.26 0.7954

X2 0.3392 0.0627 0.2163 0.4620 5.41 <0.0001

X3 -0.1514 0.1979 -0.5392 0.2364 -0.77 0.4442

X4 0.0784 0.3741 -0.6547 0.8116 0.21 0.8339
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The syntax needed to perform a logistic GEE analysis with the GENMOD
procedure is comparable to that discussed for the linear GEE analysis. The
only difference is found in the third line, where it has to be specified that the
outcome variable is dichotomous (link=logit and dist=binomial):

proc genmod data=long.x;
class id;
model ydich = x1 x2 x3 x4 time /link=logit dist=binomial;
repeated subject=id/type=exch;
run;

12.3.3 S-PLUS
Output 12.6 shows a section of the result of a logisticGEE analysis with an ex-
changeable correlation structure performed with S-PLUS. As for STATA and
SAS, the output of a logistic GEE analysis performedwith S-PLUS is compar-
able to that discussed for a linear GEE analysis. Again, the only difference

Output 12.6. Results of a logistic GEE analysis performed with S-PLUS

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Exchangeable

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -2.21034233 1.83678846 -1.2033734 1.91727343 -1.1528571

X1 0.19645777 0.75221479 0.2611724 0.75750897 0.2593471

X2 0.33915553 0.06094529 5.5649181 0.06265946 5.4126786

X3 -0.15140556 0.18079601 -0.8374386 0.19786875 -0.7651818

X4 0.07842177 0.33027236 0.2374457 0.37406819 0.2096456

TIME -0.07652509 0.03452004 -2.2168307 0.03718649 -2.0578735

Estimated Scale Parameter: 0.9642425

Number of Iterations: 4

Working Correlation
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 0.4884038 0.4884038 0.4884038 0.4884038 0.4884038

[2,] 0.4884038 1.0000000 0.4884038 0.4884038 0.4884038 0.4884038

[3,] 0.4884038 0.4884038 1.0000000 0.4884038 0.4884038 0.4884038

[4,] 0.4884038 0.4884038 0.4884038 1.0000000 0.4884038 0.4884038

[5,] 0.4884038 0.4884038 0.4884038 0.4884038 1.0000000 0.4884038

[6,] 0.4884038 0.4884038 0.4884038 0.4884038 0.4884038 1.0000000



250 Software for longitudinal data analysis

Table 12.2. Summary of the results (i.e. regression coefficients, standard
errors (in parentheses), and the scale parameter) of a logistic GEE analysis
with an exchangeable correlation structure performed with different software
packages

SPIDAa STATAb SAS S-PLUS

X1 0.22 (0.76) 0.22 (0.77) 0.20 (0.76) 0.20 (0.76)

X2 0.34 (0.06) 0.34 (0.06) 0.34 (0.06) 0.34 (0.06)

X3 −0.15 (0.20) −0.15 (0.18) −0.15 (0.20) −0.15 (0.20)

X4 0.08 (0.37) 0.08 (0.34) 0.08 (0.37) 0.08 (0.37)

Time −0.08 (0.04) −0.08 (0.04) −0.08 (0.04) −0.08 (0.04)

Scale parameter 0.98 1 1 0.96

a SPIDA was used in the examples in Chapter 6.
b The standard errors estimated in STATA are so-called ‘model based’ standard errors;

when ‘robust’ standard errors are calculated the standard errors are exactly the same as

for the other packages.

is found in the ‘logit link’ and the ‘binomial variance to mean relation’. The
syntax needed to obtain a logistic GEE analysis is also fairly straightforward:

test.gee <- gee(YDICH ∼ X1 + X2 + X3 + X4 + TIME, id=ID,
data=long, family=binomial, corstr="exchangeable")

12.3.4 Overview
Table 12.2 summarizes the results of the logistic GEE analysis with an ex-
changeable correlation structureperformedwithdifferent softwarepackages.
As was the case with the linear GEE analysis, the results obtained from the
logistic GEE analysis with different software packages are almost the same.

12.4 Random coefficient analysis with continuous outcome variables

12.4.1 STATA
STATA was used in the examples in Chapter 4, so the output will not be
repeated here. The analyses discussed in that chapter were performed with
two different procedures. The xtreg procedure is suitable for performing a
linear random coefficient analysis with only a random intercept, whereas the
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‘generalized linear latent and mixed models’ (GLLAMM) procedure can be
used when more than one random coefficient has to be estimated (Rabe-
Hesketh et al., 2001a, 2001b). This procedure is not available in the stand-
ard software, but it can easily be implemented. One major disadvantage of
the GLLAMM procedure is that the time needed to estimate the regression
coefficients is extremely long. The syntax of the xtreg procedure is highly
comparable to the syntax of the xtgee procedure:

xtreg ycont x1 x2 x3 x4 time, i(id)

The syntax of the GLLAMM procedure is slightly more extensive:

gen con=1
eq int:con
eq slope:time
gllamm ycont x1 x2 x3 x4 time, i(id) nrf(2) eqs
(int slope) nip(12)

The first line of the syntax for the GLLAMM procedure is needed to define a
row of ones, which is necessary to define the random intercept (eq int:con).
Furthermore the random slope with time is defined (eq slope:time). The
GLLAMM procedure is then the same as all other STATA commands. After
the procedure specification, the outcome variable is directly followed by the
predictor variables, and after the comma additional information is provided,
i.e. the subject identifier (i(id)), the number of random coefficients (nrf(2)),
and the definitionof the randomcoefficients (eqs(int slope)). ‘Nip’ stands for
the number of integration points, which are used to estimate the likelihood
of the random coefficient analysis. It goes far beyond the scope of this book
to explain this estimation procedure in detail. Detailed information can be
found in the software manual (Rabe-Hesketh et al., 2001a), and in several
publications (Rabe-Hesketh and Pickles, 1999; Rabe-Hesketh et al., 2000,
2001b).

12.4.2 SAS
Within SAS, the MIXED procedure can be used to perform linear random
coefficient analysis (i.e. with a continuous outcome variable). Output 12.7
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Output 12.7. Results of a linear random coefficient analysis with only a
random intercept performed with the MIXED procedure in SAS

The Mixed Procedure

Model Information

Data Set LONGBOOK. FIRST

Dependent Variable YCONT

Covariance Structure Unstructured

Subject Effect ID

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Dimensions

Covariance Parameters 2

Columns in X 6

Columns in Z Per Subject 1

Subjects 147

Max Obs Per Subject 6

Observations Used 882

Observations Not Used 0

Total Observations 882

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) ID 0.3205

Residual 0.2412

Fit Statistics

Res Log Likelihood -795.0

Akaike's Information Criterion -797.0

Schwarz's Bayesian Criterion -800.0

-2 Res Log Likelihood 1590.1

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept 3.6378 0.6786 144 5.36 <0.0001

TIME 0.1077 0.01106 732 9.74 <0.0001

X1 -0.03122 0.2784 732 -0.11 0.9108

X2 0.1102 0.02004 732 5.50 <0.0001

X3 -0.1140 0.05812 732 -1.96 0.0502

X4 0.09957 0.1226 732 0.81 0.4170
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shows the results of a linear random coefficient analysis with only a random
intercept performed with the MIXED procedure in SAS. Because the length
of the original output is quite large, only a section of the output is shown.
A few important messages can be derived from Output 12.7. First of all,

it is shown that the method of estimation is restricted maximum likelihood
(REML). In Chapter 4 it has already been mentioned that there is some
debate about the use of either a maximum likelihood or restricted maxi-
mum likelihood estimation method. Both methods are available with the
MIXED procedure in SAS, but because restricted maximum likelihood is
the default procedure, these results have been reported. The next part of
the output, which is of interest, is where the covariance parameter estimates
are presented. UN(1,1) is the variance of the normally distributed random
intercept, and ‘residual’ is the error variance.
In addition to the variance parameters, some fit statistics are also pro-

vided. Because REML was used, the −2 res log likelihood was estimated
instead of the−2 log likelihood. The interpretation is, however, basically the
same. Furthermore, Akaike’s information criterion and Schwarz’s Bayesian
criterion are presented. Both can be seen as ‘adjusted’ values of the −2 (res)
log likelihood, i.e. adjusted for the number of parameters estimated by the
particular model (Akaike, 1974; Schwarz, 1978).
The last part of the output shows the estimates of the regression coeffi-

cients, the standard errors, the degrees of freedom, the t-values (derived from
the regression coefficient divided by the standard error) and the correspond-
ing p-values. It should be noted that in the MIXED procedure the t-distri-
bution is used instead of the standard normal distribution (z-distribution),
which is used in STATA. Using the t-distribution leads to slightly higher
p-values, especially when the number of observations is low.
Output 12.8 shows (a section of) the output of a linear random coefficient

analysis with both a random intercept and a random slope with time. The
most important difference between Output 12.7 and Output 12.8 is the
number of covariance parameters that are estimated. In the analysis with
both a random intercept and a random slope with time, three covariance
parameters are estimated: (1) UN(1,1) which is an estimate of the standard
deviation of the normally distributed random intercept, (2) UN(2,2) which
is an estimate of the standard deviation of the normally distributed random
slope with time, and (3) UN(1,2) which is an estimate of the covariance
between the random intercept and the random slope. Furthermore, the value



Output 12.8. Results of a linear random coefficient analysis with a random
intercept and a random slope with time performed with the MIXED procedure
in SAS

The Mixed Procedure

Model Information

Data Set LONGBOOK. FIRST

Dependent Variable YCONT

Covariance Structure Unstructured

Subject Effect ID

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Dimensions

Covariance Parameters 4

Columns in X 6

Columns in Z Per Subject 2

Subjects 147

Max Obs Per Subject 6

Observations Used 882

Observations Not Used 0

Total Observations 882

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) ID 0.2731

UN(2,1) ID -0.00120

UN(2,2) ID 0.004955

Residual 0.2238

Fit Statistics

Res Log Likelihood -788.9

Akaike's Information Criterion -792.9

Schwarz's Bayesian Criterion -798.9

-2 Res Log Likelihood 1577.8

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept 3.7102 0.6682 144 5.55 <0.0001

TIME 0.1090 0.01224 146 8.91 <0.0001

X1 -0.01986 0.2740 586 -0.07 0.9423

X2 0.1069 0.02038 586 5.24 <0.0001

X3 -0.1239 0.05950 586 -2.08 0.0377

X4 0.04386 0.1202 586 0.36 0.7152
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of the −2 res log likelihood is different. The difference between the −2 res
log likelihoods can be used to evaluate the necessity of the random slopewith
time. The difference is 12.3, which follows a χ2 distributionwith two degrees
of freedom(i.e. thevarianceof the randomslopewith timeand thecovariance
between the random intercept and slope), which is highly significant.
The syntax needed to perform a linear random coefficient analysis with

both a random intercept and a random slope with time is shown below:

proc mixed data=long.x;
class id;
model ycont = x1 x2 x3 x4 time/s;
random int time/ subject=id;
run;

The syntax looks similar to that needed to perform a GEE analysis with the
GENMOD procedure. The difference is firstly that the ‘repeated’ statement
is replaced by the ‘random’ statement, which is necessary in order to identify
the random coefficients (i.e. intercept (int) and time). Secondly there is no
specification of the correlation structure needed.

12.4.3 S-PLUS
Within S-PLUS, linear random coefficient analysis is referred to as ‘linear
mixed effects model’. Output 12.9 shows the result of a linear random coeffi-
cient analysis with only a random intercept. The first line of the output shows
that the parameters of this linear mixed effects model were estimated with
restricted maximum likelihood (REML). As with the MIXED procedure in
SAS, the REML estimation procedure is default, although it is also possible
to perform a maximum likelihood estimation procedure. In the same block
of the output, the log likelihood of the model is shown, in addition to some
other fitmeasures. AIC and BIC stand, respectively, for Akaike’s information
criterion and Schwarz’s Bayesian criterion.
The next part of the output shows the randomeffects. In amodelwith only

a random intercept, twovarianceparameters are estimated (given as standard
deviations in the S-PLUSoutput): the standarddeviationof thenormally dis-
tributed random intercept (0.5661159) and the residual (or error) standard
deviation (0.491077). The following part of the output shows the estimates
of the regression coefficients, the standard errors of the regression coeffi-
cients, the degrees of freedom, the t-values (i.e. the regression coefficient
divided by its standard error), and the corresponding p-values. Note that
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Output 12.9. Results of a linear random coefficient analysis with only a
random intercept performed with S-PLUS

Linear Mixed Effects Model

Linear mixed-effects model fit by REML

Data: longlang

AIC BIC logLik

1606.062 1644.265 -795.0312

Random effects:

Formula: ∼ 1 | ID

(Intercept) Residual

StdDev: 0.5661159 0.491077

Fixed effects: YCONT ∼ X1 + X2 + X3 + X4 + TIME
Value Std.Error DF t-value p-value

(Intercept) 3.637756 0.6786008 732 5.360672 <0.0001

X1 -0.031219 0.2784197 144 -0.112129 0.9109

X2 0.110187 0.0200419 732 5.497859 <0.0001

X3 -0.113991 0.0581185 732 -1.961354 0.0502

X4 0.099572 0.1226030 144 0.812152 0.4180

TIME 0.107736 0.0110569 732 9.743772 <0.0001

Number of Observations: 882

Number of Groups: 147

also with S-PLUS, the t-distribution is used instead of the standard normal
distribution.
Output 12.10 shows the results of a linear random coefficient analysis

with both a random intercept and a random slope with time performed with
S-PLUS. It isobvious that themost importantdifferencebetweenOutput12.9
and Output 12.10 is the estimation of two more random effects, i.e. the ran-
dom slope with time and the correlation between the random intercept and
the random slope. As in all the other types of random coefficient analysis, the
necessity of the random slope with time can be estimated with the likelihood
ratio test. The difference between the −2 log likelihood of the analysis with
only a random intercept and the −2 log likelihood of the analysis with both
a random intercept and a random slope is exactly the same as was calculated
with the MIXED procedure in SAS, i.e. 12.3.
WithS-PLUS, the ‘linearmixedeffectsmodel’ is implemented in themenu-

driven standard software package, so no syntax is needed to perform a linear
random coefficient analysis.
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Output 12.10. Results of a random coefficient analysis with a random
intercept and a random slope with time performed with S-PLUS

Linear mixed-effects model fit by REML

Data: longbook

AIC BIC logLik

1597.817 1645.571 -788.9087

Random effects:

Formula: ∼ TIME | ID

Structure: General positive-definite

StdDev Corr

(Intercept) 0.52225722 (Inter

TIME 0.07030164 -0.03

Residual 0.47310997

Fixed effects: YCONT ∼ X1 + X2 + X3 + X4 + TIME

Value Std.Error DF t-value p-value

(Intercept) 3.710474 0.6681977 732 5.552958 <0.0001

X1 -0.019858 0.2740515 144 -0.072462 0.9423

X2 0.106854 0.0203809 732 5.242826 <0.0001

X3 -0.123972 0.0595020 732 -2.083497 0.0376

X4 0.043717 0.1201785 144 0.363766 0.7166

TIME 0.109037 0.0122370 732 8.910435 <0.0001

Number of Observations: 882

Number of Groups: 147

12.4.4 SPSS
Before the release of version 11, with SPSS it was not possible to perform
sophisticated longitudinal data analysis. However, in version 11, random
coefficient analysis for continuous outcome variables became available. This
new procedure, which is based on the algorithms discussed by Wolfinger
et al. (1994) can be derived from the menu and is called ‘mixed models –
linear’. Output 12.11 shows a section of the output of a random coefficient
analysis with only a random intercept performed in SPSS. The first part of
the output shows the information criteria. First of all the −2 restricted log
likelihood is provided (1590.062). This indicates that restricted maximum
likelihood is used as default estimation procedure. Besides the −2 restricted
log likelihood, values of other fitmeasures are also shown. AIC and BICwere
also provided by other software packages and can be seen as ‘adjusted’ values
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of the −2 restricted log likelihood. Hurvich and Tsai’s criterion (AICC) and
Bozdogan’s criterion (CAIC) are slightly different but can be interpreted in
more or less the same way (Bozdogan, 1987; Hurvich and Tsai, 1989). The
next part of the output shows the estimates of fixed effects. In this part of
the output, the regression coefficients, the standard errors, the degrees of
freedom, the t-values, the corresponding p-values, and the 95% confidence
interval around the regression coefficient are provided. The last part of the
output shows the estimates of covariance parameters. Because only a ran-
dom intercept was allowed in the analysis, only the variance of the normally
distributed random intercept (0.3204872) and the remaining error variance
(0.2411566) are provided.
Output 12.12 shows (a section of) the output of a random coefficient ana-

lysis with both a random intercept and a random slope with time performed
with SPSS. The output looks similar to the one discussed for the analysis with
only a random intercept. The difference is found in the last part in which
the estimates of covariance parameters are given. Besides the variance of the
random intercept and the remaining error variance, the random variance
of the slope with time is also given (i.e. 4.76 × 10−3). Similar to all other
random coefficient analyses, with the −2 restricted log likelihood values of
the two analyses discussed, the necessity of allowing a random slope with
time can be evaluated.

12.4.5 MLwiN
Multilevel analysis for windows (MLwiN) is specifically developed to per-
form random coefficient analysis. Output 12.13 shows the results of a linear
random coefficient analysis with only a random intercept. BecauseMLwiN is
specifically developed to performmultilevel analysis, the levels of the analysis
must first be defined. In the case of longitudinal data, the observations over
time are nested within subjects so, in this special case, time is the lowest level
of analysis and subject is the highest level of analysis. It should be noted that
in the MLwiN output the lowest level (time) is indicated by the subscript i,
and the highest level (subject) is indicated by the subscript j. This is different
from the regular notation, in which subjects are usually indicated by the
subscript i.
The first line of the output shows that the outcome variable Y is a con-

tinuous normally distributed variable. In the second line the model is given,
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Output 12.13. Results of a linear random coefficient analysis with only
a random intercept performed with MLwiN

ycont
ij

∼ N(XB, �)

ycont
ij

= β
0ij
cons + 0.109(0.011)time

ij
+ -0.024(0.276) x 1

j
+

0.111(0.020) x 2
ij

+ -0.111(0.058) x 3
ij

+ 0.101(0.121) x 4
j

β
0ij

= 3.617(0.672) + u
0j

+ e
0ij

[u
0j
] ∼ N(0, �

u
) : �

u
= [0.313(0.041)]

[e
0ij
] ∼ N(0, �

e
) : �

e
= [0.242(0.013)]

-2*log(like) = 1569.928

with the intercept β0 (‘cons’ stands for a row of ones, which has nomeaning,
but is necessary for the estimation of the intercept), the fixed regression co-
efficient for time (0.109 with standard error 0.011), and the fixed regression
coefficients for the four predictor variables (X1 to X4). The regression coeffi-
cients can be tested for significance by dividing the coefficient by its standard
error. As in GEE analysis, this ratio is known as the Wald statistic, which
approximately follows a standard normal distribution. Furthermore, from
the output it can be seen that X1 and X4 are time-independent predictor
variables (subscript j, so only varying between subjects), X2 and X3 are time-
dependent predictor variables (subscript ij, so varying between time-points
and between subjects).
The third line of the output provides information about the random in-

tercept β0. The coefficient consists of a fixed part (3.617 with standard error
0.672) and an error variance which is divided into two parts: the first part
µ is the random variation in the intercept and the second part ε is the total
‘error’ variance. In the next two lines these variances are given, with the
corresponding standard errors (µ = 0.313 (0.041) and ε = 0.242 (0.013)).
The last line of the output presents the−2 log likelihood (1569.928)which

can be used in comparison with the −2 log likelihood from a model with
both a random intercept and a random slope with time (see Output 12.14).
From Output 12.14 it can be seen that in addition to a random intercept,

a random slope is considered. For the regression coefficient for time (β1) a
within-subject variationµ is considered (fourth line in the output). So three
variance parameters are estimated: the random variation of the intercept
(0.263 with standard error 0.055), the random variation of the slope with
time (0.005 with standard error 0.002), and the covariance between random
intercept and slope (0.000 with standard error 0.009).
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Output 12.14. Results of a linear random coefficient analysis with a random
intercept and a random slope with time performed with MLwiN

ycont
ij

∼ N(XB, �)

ycont
ij

= β
0ij
cons + β

1j
time

ij
+ -0.013(0.271) x 1

j
+ 0.170(0.020)

x 2
ij

+ -0.121(0.060) x 3
ij

+ 0.044(0.119) x 4
j

β
0ij

= 3.694(0.661) + u
0j

+ e
0ij

β
1j

= 0.110(0.012) + u
1j

[
u
0j

u
1j

]

∼ N(0, �
u
) : �

u
=

[
0.263(0.055)

0.000(0.009) 0.005(0.002)

]

[e
0ij
] ∼ N(0, �

e
) : �

e
= [0.225(0.013)]

-2*log(like) = 1557.898

The likelihood ratio test can be used to decide whether or not a random
slope should be added to the model. The difference between the −2 log
likelihood of the model without a random slope (i.e. 1569.928) and a model
with a random slope with time (i.e. 1557.898)) is 12.03, which follows a χ2

distribution with two degrees of freedom, and is highly significant. It should
be noted that the log likelihood values obtained from MLwiN are slightly
different to those obtained from SAS and S-PLUS. This is due to the fact that
withMLwiN an iterative generalized least squares (IGLS) approach is used by
default,which isbasically the sameasmaximumlikelihood, and thatwithSAS
and S-PLUS restrictedmaximum likelihood is used.WithMLwiN a so-called
restricted iterative generalized least squares (RIGLS) estimation procedure
can also be used, which is comparable to restricted maximum likelihood
(Goldstein, 1986, 1989, 1995). Because with MLwiN the random coefficient
analysis can be directly derived from the menu, no syntax is needed.

12.4.6 Overview
Table 12.3 summarizes the results of the linear random coefficient analyses
with both a random intercept and a random slope with time performed
with different software packages. From Table 12.3 it can be seen that using
a different software package does not lead to different results of the linear
random coefficient analysis. This is irrespective of the estimation procedure
used, because the results derived fromSAS, S-PLUS, or SPSS (i.e. all packages
use the REML estimation procedure as default) did not differ from the re-
sults derived from STATA andMLwiN (i.e. both packages use the maximum
likelihood estimation procedure). It is often argued that the REML approach
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Table 12.3. Summary of the results (i.e. regression coefficients, standard errors (in
parentheses), −2 log likelihoods and random variances) of a linear random coefficient
analysis with both a random intercept and a random slope with time performed with
different software packages

STATAa SASb MLwiNa S-PLUSb SPSSb

X1 −0.02 (0.27) −0.02 (0.27) −0.01 (0.27) −0.02 (0.27) −0.02 (0.27)

X2 0.11 (0.02) 0.11 (0.02) 0.11 (0.02) 0.11 (0.02) 0.11 (0.02)

X3 −0.12 (0.06) −0.12 (0.06) −0.12 (0.06) −0.12 (0.06) −0.12 (0.06)

X4 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12) 0.04 (0.12)

Time 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01)

−2 log likelihood 1557.8 1577.8 1557.9 1577.8 1577.8

Random variance

Intercept 0.265 0.273 0.263 0.273c 0.268

Slope 0.005 0.005 0.005 0.005c 0.005

a Estimated with maximum likelihood.
b Estimated with restricted maximum likelihood.
c In the original output standard deviations are given.

gives a ‘better’ estimation of the variance components in the random coeffi-
cient analysis. However, although there is a difference in the variance of the
intercept, this difference is very small anddoesnot affect themagnitudeof the
regression coefficients or the standard errors of the regression coefficients.

12.5 Random coefficient analysis with dichotomous outcome variables

12.5.1 Introduction
In Chapter 6 it has already been mentioned that logistic random coef-
ficient analysis (i.e. with dichotomous outcome variables) is quite diffi-
cult to perform. Basically there are two possible approaches. The most
straightforward approach is theGauss–Hermite technique,which is based on
Gaussian quadrature points (see also Section 12.4.1). The second approach
is based on so-called penalized quasi-likelihood (PQL). However, it is far
beyond the scope of this book to explain these techniques in detail. For more
information, reference ismade to themore technical literature (e.g.Goldstein,
1991; Schall, 1991; Breslow and Clayton, 1993; Longford, 1993; Liu and
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Pierce, 1994; Pinheiro and Bates, 1995; Goldstein and Rasbash, 1996; Agresti
et al., 2000; Lesaffre and Spiessens, 2001), and the reference manuals of
the different software packages. Because of the estimation problems, not all
software packages provide facilities to perform a logistic random coefficient
analysis. With STATA and SAS, the Gauss–Hermite technique is available,
while inMLwiN the PQL procedure can be applied. Unfortunately, a proced-
ure for logistic random coefficient analysis has not yet been developed in
S-PLUS.

12.5.2 STATA
In the examples discussed inChapter 6, STATAwas used to perform a logistic
random coefficient analysis. It should be noted that in the standard STATA
software, random coefficient analysis can only be performed with one ran-
dom coefficient (e.g. a random intercept). This is implemented in the xtlogit
procedure. The syntax needed for this procedure is as follows:

xtlogit ydich x1 x2 x3 x4 time, i(id) fam(bin) link(logit)

For random coefficient analysis with more random regression coefficients,
the GLLAMM procedure can be used:

gen con=1
eq int:con
eq slope:time
gllamm ydich x1 x2 x3 x4 time,
i(id) fam(bin) link(logit) nrf(2) eqs(int slope) nip(12)

The syntax for both procedures is comparable to the syntax described for
the linear random coefficient analysis. In the syntax for the logistic random
coefficient analysis additionally the binomial family and the logit link have
to be specified.
In the examples presented inChapter 6, theGLLAMMprocedurewas used

with 12 quadrature points. Unfortunately, in contrast to linear random coef-
ficient analysis, the results of logistic random coefficient analysis highly de-
pend on the number of quadrature points used in the estimation procedure.
To illustrate this, Table 12.4 gives a summary of the results of several logistic
random coefficient analyses with a different number of quadrature points.
The results summarized in Table 12.4 are very clear. Although the ana-

lysis is quite simple (i.e. only a random intercept and a random slope with
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Table 12.4. Summary of the results (i.e. regression coefficients and standard
errors (in parentheses), and random variances) of logistic random coefficient
analyses with a different number of quadrature points

Number of quadrature points

4 10 12 15

X1 0.26 (1.36) 0.43 (1.57) 0.33 (1.63) 0.15 (1.22)

X2 0.75 (0.14) 0.73 (0.14) 0.72 (0.14) 0.73 (0.13)

X3 −0.15 (0.41) −0.23 (0.36) −0.23 (0.36) −0.14 (0.34)

X4 0.26 (0.54) 0.44 (0.66) 0.46 (0.70) 0.23 (0.55)

Time −0.17 (0.09) −0.08 (0.09) −0.07 (0.10) −0.02 (0.10)

Random variance

Intercept 9.639 12.519 13.116 18.064

Slope 0.114 0.107 0.109 0.165

time, and only four predictor variables and time), the results of the analyses
differ remarkably. This was also recognized by other authors who carried
out similar comparisons (e.g. Lesaffre and Spiessens, 2001). In the statistical
literature, it is generally accepted that 10 quadrature points are sufficient for
a ‘valid’ logistic random coefficient analysis, although others suggest that 20
quadrature points are needed (e.g. Hu et al., 1998; Rodriguez and Goldman,
2001). However, in the present example, as well as in examples presented
by others (e.g. Lesaffre and Spiessens, 2001), neither of these suggestions is
confirmed.

12.5.3 SAS
A few years ago, a SAS macro called GLIMMIX that can be used to perform
logistic random coefficient analysis became available (Breslow and Clayton,
1993). However, the performance of this procedure was not very satisfactory
(Wolfinger, 1998; Lesaffre and Spiessens, 2001). Basically, GLIMMIX is only
suitable when the number of observations per subject is fairly large; unfor-
tunately, in the field of epidemiological research this is almost never the case.
Nowadays the NLMIXED procedure is available for logistic random coef-
ficient analysis. Output 12.15 shows (a section of) the results of a logistic
random coefficient analysis with both a random intercept and a random
slope with time performed with the NLMIXED procedure in SAS.
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The output of the NLMIXED procedure is not very straightforward, and
deserves further explanation. The first part of the output provides general
information about the estimation procedure. It can be seen that a binary out-
come variable is used (i.e. that a logistic random coefficient analysis has been
performed) and that there are two random effects, which are both normally
distributed. Furthermore, it shows that a dual quasi-Newton algorithm is
used and that an adaptive Gaussian quadrature method is used. The latter
can be seen as an extension to the standard Gauss–Hermite technique (for
details, see for instance Lesaffre andSpiessens, 2001). Thedual quasi-Newton
algorithm is one of the possible optimization techniques available for logis-
tic random coefficient analysis which will not be discussed any further (for
details see the software manuals). From the next part of the output it can
be seen that nine quadrature points are used for the estimation (by default
the NLMIXED procedure in SAS defines more or less by itself how many
quadrature points are needed, although it can be changed manually). It also
shows that nine parameters are estimated, the starting values of which are
shown below the general information. The problems with the NLMIXED
procedure in SAS are that the user has to provide the starting values for
the different parameters and (even more problematic) that the final results
of the estimated regression coefficients and standard errors can depend on
the choice of these starting values. If no starting values are provided, the
NLMIXED procedure assumes a starting value of one for all parameters.
The nine parameters to be estimated correspond with the intercept (beta0),
the regression coefficient for time (beta1), the regression coefficients for the
four predictor variables X1 to X4 (beta2 to beta5), the random variance of
the intercept (s2b0), the random variance of the slope with time (s2b1), and
the covariance (interaction) between the random intercept and the random
slope with time (cb01).
The next part of the output shows the results: firstly the fit of the model

(i.e. the (−2) log likelihood, Akaike’s information criterion, and Schwarz’s
Bayesian criterion), and secondly the information regarding the regression
coefficients and the random components, including standard errors, 95%
confidence intervals, and p-values (which are based on the t-distribution).
The most important parts of the output are the regression coefficients, the
corresponding standard errors and the variances of the random coefficients.
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The syntax needed to perform a logistic random coefficient analysis with
the NLMIXED procedure is rather complicated:

proc nlmixed data=long;
parms beta0=-4 beta1=-1 beta2=0.6 beta3 =1 beta4=
-1 beta5=1 s2b0=6 s2b1=1 cb01=1;
c1 = beta0 + b0;
c2 = beta1 + b1;
eta = c1 + (c2*time)+ beta2*x1 + beta3*x2 + beta4*x3
+ beta5*x4;
expeta = exp(eta);
p = expeta / (1+expeta);
model ydich ∼ binary(p);
random b0 b1 ∼ normal([0,0],[s2b0,cb01,s2b1]) subject=id;
run;

With the ‘parms’ statement, starting values are assigned to all parameters that
are to be estimated. After this, the random coefficients are specified for the
intercept (c1) and for the slope with time (c2). In the next lines the logistic
model is specified, while in the last line of this command the random effects
are defined.

12.5.4 MLwiN
Output 12.16 shows the results of a logistic random coefficient analysis with
both a random intercept and a random slope with time performed with
MLwiN. TheMLwiN output with a dichotomous outcome variable is similar
to theMLwiNoutputwith a continuousoutcomevariable.Thefirst lineof the
output shows that a binomial distribution is used (i.e. that a dichotomous
outcome variable is analysed). ‘Denom’ and ‘bcons’ are specifications for
(generally) rows of ones, which are needed to perform the logistic random
coefficient analysis (for details see the software manual). The next part of
the output shows that the logit is analysed, which indicates that a logistic
random coefficient analysis has been performed, and provides the regression
coefficients and the standard errors, which can be evaluated in exactly the
same way as has been described for a linear random coefficient analysis
performed with MLwiN. Furthermore, information about the random part
of the analysis is given: the variance of the normally distributed random
intercept (11.527), the variance of the normally distributed random slopes
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Output 12.16. Results of a logistic random coefficient analysis with both a
random intercept and a random slope with time performed with MLwiN

yvar01ij ∼ Binomial(denomij, πij)

yvar01ij = πij + e6ij bcons*

}

logit(πij) = β0jcons + β1jtimeij + 0,384(1,303) x 1j +

0,655(0,119) x 2ij + -0,182(0,328) x 3ij + 0,269(0,565) x 4j

β0j = -4,662(3,182) + u0j
β1j = -0,070(0,078) + u1j
[
u0j
u1j

]

∼ N(0, �u) : �u =

[
11,527(2,819)

-0,969(0,414) 0,089(0,072)

]

bcons* = bcons[πij(1 - πij)/denomij]0.5

[
e6ij

] ∼ (0, �e) : �e = [1,000(0,000)]

with time (0.089) and the covariance between the random intercept and the
random slope with time (−0.969). Besides this it can be seen that the overall
error variance is fixed at a value of one, which is typical for a logistic random
coefficient analysis.
It should also be noted that as a result of the PQL estimation procedure, no

log likelihood values are produced. This is different from theGauss–Hermite
approach (implemented in SAS and STATA), which does produce a log likeli-
hood value. So, withMLwiN the necessity of a random intercept or a random
slope with time cannot be estimated with the likelihood ratio test. The only
possibility left is to evaluate the magnitude of the different variances and the
corresponding standard errors. Sometimes the standard deviation is divided
by its standard error to obtain a sort ofWald statistic. However, although this
provides some information about the necessity of a random coefficient, the
interpretation is not straightforward. Logistic random coefficient analysis in
MLwiN can be derived directly from the menu, so no syntax is needed.

12.5.5 Overview
Table 12.5 summarizes the results of the logistic random coefficient analysis
with both a random intercept and a random slope with time performed with
different software packages. From Table 12.5 it can be seen that there are
major differences between the results obtained with the different software
packages. Although the overall conclusions (if based on p-values) are the
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Table 12.5. Summary of the results (i.e. regression coefficients, standard
errors (in parentheses), and random variances) of a logistic random coefficient
analysis with both a random intercept and a random slope with time
performed with different software packages

STATAa SASb MLwiNc

X1 0.33 (1.63) 0.15 (1.43) 0.38 (1.30)

X2 0.72 (0.14) 0.72 (0.13) 0.66 (0.12)

X3 −0.23 (0.36) −0.19 (0.35) −0.18 (0.33)

X4 0.46 (0.70) 0.33 (0.63) 0.27 (0.57)

Time −0.07 (0.10) −0.04 (0.10) −0.07 (0.08)

Random variance

Intercept 13.116 15.905 11.527

Slope 0.109 0.138 0.089

a 12 quadrature points are used for the estimation.
b Nine quadrature points are used for the estimation.
c A second-order PQL procedure was used for the estimation.

same for all three analyses, the magnitude of the regression coefficients and
standard errors is very different. It should also be noted that when a logistic
random coefficient analysis is performed with the GLLAMM procedure in
STATA with nine quadrature points, both the regression coefficients and the
standard errors are different to those obtainedwith theNLMIXEDprocedure
in SAS with nine quadrature points (results not shown in detail).
In general, a comparison between all logistic random coefficient analyses

illustrated in this section indicates the instability of this kind of longit-
udinal analysis. In other words, the results obtained from a random coeffi-
cient analysis with dichotomous outcome variables must be interpreted very
cautiously.

12.6 Categorical and ‘count’ outcome variables

Longitudinal data analysis with a categorical outcome variable is not imple-
mented inmany softwarepackages yet. In the examplediscussed inChapter 7,
the GLLAMM procedure was used to analyse the longitudinal relationship
between the categorical outcome variable Ycat and the four predictor vari-
ables X1 to X4 and time. The syntax needed to perform that analysis is
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comparable to the syntax needed to perform other random coefficient ana-
lyses in STATA:

gllamm ycat x1 x2 x3 x4 time, i(id) fam(bin) link(mlogit)
nrf(2) eqs(int slope) nip(12)

The only difference from the syntax needed to perform a logistic random
coefficient analysis is the fact that an mlogit link function is specified, which
indicates that amultinominal (polytomous) logistic regression is performed.
All packages suitable for performing a logistic GEE analysis or a logistic

random coefficient analysis are also suitable for the longitudinal analysis of
a ‘count’ outcome variable. The only difference is that for the analysis of a
‘count’ outcome variable, a ‘log’ link function and a ‘Poisson’ distribution
have to be specified.Although the output and syntax of the different packages
will not be discussed in detail, just as an example the syntax needed for GEE
analysis and random coefficient analysis with a ‘count’ outcome variable in
STATA is given below:

xtgee ycount x1 x2 x3 x4 time, i(id) fam(poisson)
link(log) corr(exch)
gllamm ycount x1 x2 x3 x4 time, i(id) fam(poisson)
link(log) nrf(2) eqs(int slope) nip(12)

12.7 Alternative approach using covariance structures

Up to now, two sophisticated statistical techniques, developed to correct for
the dependency of observations within one subject over time, have been
discussed. There is, however, a widely used alternative approach for analysis
of continuous outcome variables, which does not correct for within-subject
correlations, but for within-subject covariances (see for instance Jennrich
and Schluchter, 1986; Littel et al., 2000). In Section 4.7.3 it has already been
mentioned that the covariance between an outcome variablemeasured twice
in time is directly related to the correlation between the two measurements
(Equation (4.10)).
The general concept of this approach is to select a priori a certain ‘working’

covariance structure, which is used in the estimation of the regression coeffi-
cients. It is not surprising that the possible choice of structures is comparable
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to the choice of correlation structures in GEE analysis (see Section 4.5.2).
As in GEE analysis, one possibility is the ‘independent structure’, which
models the covariances (i.e. correlations) as zero. The ‘compound sym-
metry’ or ‘exchangeable covariance structure’ assumes equal correlations
(irrespective of the time interval between the repeated measurements), and
equal variances of the repeated measurements. An ‘exchangeable’ covari-
ance structure for a longitudinal study with six measurements is shown
below:

σ 2 ×











1 ρ ρ ρ ρ ρ

ρ 1 ρ ρ ρ ρ

ρ ρ 1 ρ ρ ρ

ρ ρ ρ 1 ρ ρ

ρ ρ ρ ρ 1 ρ

ρ ρ ρ ρ ρ 1











Comparable to what has already been discussed for GEE analysis, several
other structures can be chosen. For instance a ‘first-order autoregressive
covariance structure’

σ 2 ×










1 ρ ρ2 ρ3 ρ4 ρ5

ρ 1 ρ ρ2 ρ3 ρ4

ρ2 ρ 1 ρ ρ2 ρ3

ρ3 ρ2 ρ 1 ρ ρ2

ρ4 ρ3 ρ2 ρ 1 ρ

ρ5 ρ4 ρ3 ρ2 ρ 1












a ‘5-dependent covariance structure’, which is also known as a ‘Toeplitz (5)
covariance structure’

σ 2 ×











1 ρ1 ρ2 ρ3 ρ4 ρ5

ρ1 1 ρ1 ρ2 ρ3 ρ4

ρ2 ρ1 1 ρ1 ρ2 ρ3

ρ3 ρ2 ρ1 1 ρ1 ρ2

ρ4 ρ3 ρ2 ρ1 1 ρ1

ρ5 ρ4 ρ3 ρ2 ρ1 1









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an ‘unstructured covariance structure’











σ1
2 ρ12σ1σ2 ρ13σ1σ3 ρ14σ1σ4 ρ15σ1σ5 ρ16σ1σ6

ρ12σ1σ2 σ2
2 ρ23σ2σ3 ρ24σ2σ4 ρ25σ2σ5 ρ26σ2σ6

ρ13σ1σ3 ρ23σ2σ3 σ3
2 ρ34σ3σ4 ρ35σ3σ5 ρ36σ3σ6

ρ14σ1σ4 ρ22σ2σ4 ρ34σ3σ4 σ4
2 ρ45σ4σ5 ρ46σ4σ6

ρ15σ1σ5 ρ25σ2σ5 ρ35σ3σ5 ρ45σ4σ5 σ5
2 ρ56σ5σ6

ρ16σ1σ6 ρ26σ2σ6 ρ36σ3σ6 ρ46σ4σ6 ρ56σ5σ6 σ6
2











Although the unstructured covariance structure is obviously the best
choice for the ‘working’ covariance structure, it can be seen that, when using
this structure in a study with six measurements, 21 parameters must be
calculated (six variance parameters and 15 correlation coefficients). As in
GEE analysis, it is worthwhile to choose the least complicated covariance
structure, which ‘fits’ the data well. It has already been mentioned that for
GEE analysis there was no indication of the fit of the longitudinal model
which could be used to evaluate the different correlation structures. In the
approachbasedoncovariance structures, however, the regression coefficients
are estimated with maximum likelihood or restricted maximum likelihood,
so models with different covariance structures can be compared by means
of the log likelihoods.

12.7.1 Example
The alternative approach, correcting for the within-subject covariances, is
implemented in theMIXEDprocedure inSAS,whichwasalreadydiscussed in
Section 12.4.2, and in SPSS version 11 which was discussed in Section 12.4.4.
Output 12.17 shows (a section of) the output of a longitudinal analysis with
an unstructured covariance structure performedwith theMIXEDprocedure
in SAS.
The output looks similar to the output of the linear random coefficient

analysis performed with the MIXED procedure in SAS. From the output it
can be seen that 21 covariance parameters are estimated. The first parameter
(UN(1,1)) is an indication of the variance of the first measurement, the sec-
ond parameter (UN(2,1)) is an indication of the covariance between the first
and the secondmeasurements, and so on. It can also be seen that a restricted
maximum likelihood (REML) estimation procedure is used, and that as a
result of that a−2 res log likelihood is estimated (i.e. 1369.4). This value can
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Output 12.17. Results of a longitudinal analysis with an unstructured
covariance structure performed with the MIXED procedure in SAS

Model Information

Data Set LONGBOOK. FIRST

Dependent Variable YCONT

Covariance Structure Unstructured

Subject Effect ID

Estimation Method REML

Residual Variance Method None

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Between-Within

Dimensions

Covariance Parameters 21

Columns in X 6

Columns in Z 0

Subjects 147

Max Obs Per Subject 6

Observations Used 882

Observations Not Used 0

Total Observations 882

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) ID 0.5044

UN(2,1) ID 0.3415

UN(2,2) ID 0.4187

UN(3,1) ID 0.2950

UN(3,2) ID 0.3242

UN(3,3) ID 0.4503

UN(4,1) ID 0.2356

UN(4,2) ID 0.3120

UN(4,3) ID 0.3799

UN(4,4) ID 0.4906

UN(5,1) ID 0.3222

UN(5,2) ID 0.2973

UN(5,3) ID 0.3113

UN(5,4) ID 0.2924

UN(5,5) ID 0.5305

UN(6,1) ID 0.4517

UN(6,2) ID 0.3490

UN(6,3) ID 0.3203
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UN(6,4) ID 0.2208

UN(6,5) ID 0.4912

UN(6,6) ID 1.0840

Fit Statistics

Res Log Likelihood -684.7

Akaike's Information Criterion -705.7

Schwarz's Bayesian Criterion -737.1

-2 Res Log Likelihood 1369.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

20 625.87 <0.0001

Solution for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept 3.8265 0.6616 144 5.78 <0.0001

TIME 0.05719 0.01159 144 4.94 <0.0001

X1 -0.05687 0.2716 144 -0.21 0.8344

X2 0.1055 0.01946 144 5.42 <0.0001

X3 -0.1041 0.05055 144 -2.06 0.0414

X4 0.07004 0.1195 144 0.59 0.5587

be used to evaluate the necessity of an unstructured covariance structure in
this particular situation. Again, it should be noted that the least complicated
covariance structure is preferred. A possible next step is to analyse the same
dataset with an exchangeable covariance structure. Output 12.18 shows the
results of this analysis.
From the output it can be seen that with a compound symmetry (i.e.

exchangeable) covariance structure only two covariance parameters are es-
timated. The likelihood ratio test can be used to decide which covariance
structure is to be preferred in the analysis. Therefore, the difference between
the−2 res log likelihoods of bothmodels has to be calculated. This difference
follows a χ2 distribution with 19 degrees of freedom. Again, the number of
degrees of freedom is based on the difference in the number of parameters to
be calculatedwith each analysis.With the unstructured covariance structure,
21 parameters were calculated, while for the exchangeable covariance struc-
ture only two parameters were calculated. The difference between the−2 res
log likelihoods (i.e. 220.7) is highly significant or, in other words, the
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Output 12.18. Results of a longitudinal analysis with an exchangeable
covariance structure performed with the MIXED procedure in SAS

Model Information

Data Set LONGBOOK. FIRST

Dependent Variable YCONT

Covariance Structure Compound Symmetry

Subject Effect ID

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Between-Within

Covariance Parameters Estimates

Cov Parm Subject Estimates

CS ID 0.3205

Residual 0.3205

Fit Statistics

Res Log Likelihood -795.0

Akaike's Information Criterion -797.0

Schwarz's Bayesian Criterion -800.0

-2 Res Log Likelihood 1590.1

Null Model Likelihood Ratio Test

DF Chi-Square Pr > Chisq

1 405.25 < 0.0001

Solution for fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept 3.6378 0.6786 144 5.36 <0.0001

TIME 0.1077 0.01106 732 9.74 <0.0001

X1 -0.03122 0.2784 144 -0.11 0.9109

X2 0.1102 0.02004 732 5.50 <0.0001

X3 -0.1140 0.05812 732 -1.96 0.0502

X4 0.09957 0.1226 144 0.81 0.4180

model with an unstructured covariance structure is ‘better’ than the model
with an exchangeable covariance structure. Because there are other possi-
ble covariance structures that can be considered with less parameters to be
estimated than with the unstructured covariance structure, the data were
reanalysed with a 5-dependent (i.e. Toeplitz (5)) covariance structure, and
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Table 12.6. −2 res log likelihoods and the number of estimated parameters
of longitudinal data analysis correcting for different covariance structures

Number of parameters

Covariance structure −2 res log likelihood estimated

Exchangeable (compound symmetry) 1590.1 2

First-order autoregressive 1541.2 2

5-Dependent (Toeplitz (5)) 1504.4 6

Unstructured 1369.4 21

Table 12.7. Regression coefficients and standard errors (in parentheses)
obtained from the SAS MIXED procedure correcting for different covariance
structures and obtained from GEE analyses correcting for different correlation
structures

SAS MIXED (covariance structure) GEE analysis (correlation structure)

Exchangeable Unstructured Exchangeable Unstructured

X1 −0.03 (0.28) −0.06 (0.27) −0.02 (0.27) −0.01 (0.29)

X2 0.11 (0.02) 0.11 (0.02) 0.11 (0.02) 0.11 (0.02)

X3 −0.11 (0.06) −0.10 (0.05) −0.11 (0.06) −0.09 (0.06)

X4 0.10 (0.12) 0.07 (0.12) 0.10 (0.13) 0.09 (0.14)

Time 0.11 (0.01) 0.06 (0.01) 0.11 (0.01) 0.09 (0.01)

with a first-order autoregressive covariance structure. Table 12.6 summarizes
the results.
Based on the results of the −2 res log likelihoods, an unstructured co-

variance structure seems to be the most appropriate in this particular situa-
tion. To illustrate the importance of a good choice of covariance structure,
Table 12.7 shows the regression coefficients and standard errors of the four
predictor variables and time, calculated with an exchangeable and an un-
structured covariance structure. The same table also shows the coefficients
for comparable GEE analyses.
From Table 12.7 it can be seen that the results of a GEE analysis with an

exchangeable correlation structure are almost equal to the results obtained
from an analysis using the MIXED procedure in SAS with an ‘exchangeable’
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covariance structure. This is not surprising, because in both situations only
one variance parameter and one correlation coefficient is estimated. The
small difference observed in the results is due to the different estimation
procedures (i.e. restricted maximum likelihood and quasi-likelihood). The
major difference between the SAS MIXED procedure and the GEE analysis
occurs in the comparison between an unstructured covariance and unstruc-
turedcorrelationstructure. In thefirst situation,differentvariancesareestim-
ated at the different time-points, while in GEE analysis only one variance
parameter is estimated. So (probably), the greatest advantage of the MIXED
procedure, compared to GEE analysis, is the flexibility of modelling the vari-
ance over time. Furthermore, there is the possibility to evaluate the need for a
certain (more complicated) covariance structure by means of the likelihood
ratio test. A major disadvantage of the MIXED procedure in SAS is that it is
only suitable for continuous outcome variables.
Finally, it should be noted that an analysis using the MIXED procedure

in SAS with an ‘exchangeable’ covariance structure is exactly the same as a
linear random coefficient analysis with only a random intercept. Comparing
Output 12.18 with Output 12.7 in which the results of a linear random
coefficient analysis with only a random intercept (estimated with restricted
maximum likelihood) were provided, shows this.
The syntax needed to perform a longitudinal analysis with a correction for

a unstructured covariance structure in theMIXEDprocedure is given below:

proc mixed data=long.x;
class id;
model ycont = x1 x2 x3 x4 time/s;
repeated id/ subject=id type=unstruc;
run;

The syntax is comparable to what has been discussed earlier for the MIXED
procedure used to perform a linear random coefficient analysis. The differ-
ences are observed in the last line of the syntax, where the ‘random’ statement
is replaced by the ‘repeated’ statement, and in the additional specification of
the covariance structure (type=unstruc). A detailed description of the (al-
most infinite) possibilities within the SAS MIXED procedure can be found
in the software manual (SAS Institute Inc., 1997).



13

Sample size calculations

13.1 Introduction

Before performing a (longitudinal) study, it is ‘necessary’ to calculate the
number of subjects needed to ensure that a certain predefined effect is
significant. Sample size calculations are also aprerequisite for researchgrants.
This is basically a very strange phenomenon. First of all, sample size calcula-
tions are based on assumptions which can easily be changed, in which case
the number of subjects needed will be totally different. Secondly, sample size
calculations are related to the importance of ‘significance levels’ (how many
subjects are needed tomake a certain ‘effect’ significant?) and that is strange
because in epidemiological research the importance of significance levels is
becomingmore andmore questionable. Nevertheless there is a large amount
of literature discussing sample size calculations in longitudinal studies
(e.g. Lui and Cumberland, 1992; Snijders and Bosker, 1993; Lee and Durbin,
1994; Lipsitz and Fitzmaurice, 1994; Diggle et al., 1994; Liu and Liang, 1997;
Hedeker et al., 1999).
However, because grant providers believe that sample size calculations

are important, this chapter provides a few simple equations and some basic
information on how to calculate sample sizes in longitudinal (experimental)
studies.
Basically, the sample size calculations are the same as for ‘standard’ ex-

perimental studies. It should be noted that these ‘standard’ calculations are
only suitable for experimental studies with one follow-up measurement.
In fact, with the standard sample size calculations the difference in a cer-
tain outcome variable between several groups at the first follow-up meas-
urement is used as an effect size. This assumes that the baseline values
for the groups to be compared are equal, which is quite a reasonable as-
sumption in a randomized trial. Equation (13.1) shows how the sample

280



281 Introduction

size can be calculated in the ‘standard’ situation for a continuous outcome
variable.

N =
(
Z(1−α/2) + Z(1−β)

)2
σ 2(r + 1)

v2r
(13.1)

where N is the sample size, Z(1−α/2) is the (1 − α/2) percentile point of the
standard normal distribution, Z(1−β) is the (1 − β) percentile point of the
standard normal distribution, σ is the standard deviation of the outcome
variable, r is the ratio of the number of subjects in the compared groups, and
v is the difference inmean value of the outcome variable between the groups.
For dichotomous outcome variables a comparable equation can be used

(Equation (13.2)).

N =
(
Z(1−α/2) + Z(1−β)

)2
p̄(1 − p̄)(r + 1)

(p1 − p0)
2r

(13.2a)

p̄ = p1 + (r p0)

1 + r
(13.2b)

where N is the sample size, Z(1−α/2) is the (1 − α/2) percentile point of the
standard normal distribution, Z(1−β) is the (1 − β) percentile point of the
standard normal distribution, p̄ is the ‘weighted’ average of p0 and p1, r is
the ratio of the number of subjects in the compared groups, p1 is the propor-
tion of ‘cases’ in the intervention group, and p0 is the proportion of ‘cases’
in the reference group.
When more than one follow-up measurement is carried out, and the

purpose of the study is to compare the development in the outcome variable
along the total follow-up period, the equations can be adjusted with an in-
dication of the correlation between the repeated measurements (Equations
(13.3) and (13.4)). It should be noted that when the purpose of the experi-
mental study is just to compare the different groups at one single point in
time, Equations (13.1) and (13.2)must be applied. For a continuousoutcome
variable the adjusted equation is as follows:

N =
(
Z(1−α/2) + Z(1−β)

)2
σ 2(r + 1)[1 + (T − 1)ρ]

v2r T
(13.3)

where N is the sample size, Z(1−α/2) is the (1 − α/2) percentile point of the
standard normal distribution, Z(1−β) is the (1 − β) percentile point of the
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Table 13.1. Sample sizes needed to make a certain difference in a continuous
outcome variable statistically significant on a 5% level with a power of 80%;
studies with different within-subject correlation coefficients (ρ)

Expected difference (in standard deviation units)

0.1 0.2 0.5 1

Three repeated measurements

ρ = 0 785 196 31 8

ρ = 0.25 981 245 39 10

ρ = 0.5 1178 294 47 12

Four repeated measurements

ρ = 0 523 130 21 5

ρ = 0.25 785 196 31 8

ρ = 0.5 1047 262 42 10

standard normal distribution, σ is the standard deviation of the outcome
variable, r is the ratio of the number of subjects in the compared groups,
T is the number of follow-upmeasurements, ρ is the correlation coefficient
of the repeated measurements, and v is the difference in mean value of the
outcome variable between the groups.
To illustrate how many subjects are needed to show a certain significant

difference between groups, Equation (13.3) is applied to several research
situations in which the difference between groups is expressed in standard
deviation units. Table 13.1 presents a ‘sample size table’ for several studies
in which three and four measurements are carried out, i.e. in which two and
three follow-up measurements are carried out.
For sample size calculations in experimental studies with a dichotomous

outcome variable, Equation (13.4) can be applied:

N =
(
Z(1−α/2) + Z(1−β)

)2
p̄(1 − p̄)(r + 1)[1 + (T − 1)ρ]

(p1 − p0)2r T
(13.4)

where N is the sample size, Z(1−α/2) is the (1 − α/2) percentile point of
the standard normal distribution, Z(1−β) is the (1 − β) percentile point of
the standard normal distribution, p̄ is the ‘weighted’ average of p0 and p1
(Equation (13.2b)), r is the ratio of the number of subjects in the compared
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Table 13.2. Sample sizes needed to make a certain difference in a
dichotomous outcome variable statistically significant on a 5% level with a
power of 80%; studies with different within-subject correlation coefficients (ρ)

Expected proportion of intervention groupa

0.4 0.3 0.2

Three repeated measurements

ρ = 0 194 47 20

ρ = 0.25 243 59 25

ρ = 0.5 291 71 30

Four repeated measurements

ρ = 0 130 31 13

ρ = 0.25 194 47 20

ρ = 0.5 259 59 26

a The expected proportion in the reference category is assumed to be 0.5.

groups, T is the number of follow-upmeasurements, ρ is the correlation co-
efficient of the repeated measurements, p1 is the proportion of ‘cases’ in the
intervention group, and p0 is the proportion of ‘cases’ in the reference group.
Based on Equation (13.4) a ‘sample size table’ for different studies with a

dichotomous outcome variable can also be constructed (Table 13.2).
All sample size equations presented in this section can be used to estim-

ate the sample size needed for a particular experimental study or to calcu-
late the ‘power’ of that particular study.Here again it should be noted that for
the calculation of sample sizes or power, certain assumptions are necessary,
i.e. the expected difference between the groups, the standard deviation of the
outcome variable of interest, and the within-subject correlation coefficient.
Furthermore, in the equations, a specific significance level (usually 5%) is es-
sential, and the importance of significance levels is rather doubtful. Caution
is therefore strongly advised in the use of sample size equations.

13.2 Example

As has been mentioned before, Equations (13.3) and (13.4) can be used
to calculate the power of a particular longitudinal study, given a certain
sample size. In this section, power calculations will be performed for the two
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Table 13.3. Information needed to perform a power analysis for an experimental study
with a continuous outcome variable described in Section 9.2

N average sample size at the first and second follow-up measurement,

N = 137

sd average standard deviation at the first and second follow-up measurement,

sd = 13.6

ρ correlation between the first and second follow-up measurement, ρ = 0.687

T number of follow-up measurements, T = 2
(
Z(1−α/2) + Z(1−β)

)2
with a significance level of 5% and a power of 80%,
(
Z(1−α/2) + Z(1−β)

)2 = 7.85

Table 13.4. Information needed to perform a power analysis for an experimental
study with a dichotomous outcome variable described in Section 9.3

N sample size per group, N = 60

p0 proportion recovered in the reference group, p0 = 50%

ρ correlation between the follow-up measurements (estimated with

GEE analysis), ρ = 0.15

T number of follow-up measurements, T = 3
(
Z(1−α/2) + Z(1−β)

)2
with a significance level of 5% and a power of 80%,
(
Z(1−α/2) + Z(1−β)

)2 = 7.85

examples, which were explained in detail in Chapter 9. Table 13.3 shows the
information that is needed to perform a power analysis for the experimental
study with a continuous outcome variable.
With the information presented in Table 13.3, the smallest difference that

will be significant in this experimental study can be calculated with Equation
(13.3).

137 = 7.85 × 13.62 × 2 × [1 + (2 − 1) × 0.687]

v2 × 1 × 2

v = √
17.8789 = 4.23

So, the smallest difference in systolic blood pressure between the two groups
that will be significant in this experimental study is 4.23 mmHg.
A similar calculation can be made for the example with a dichotomous

outcome variable. Based on the information about the study (Table 13.4), the
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smallest detectable difference (i.e. the smallest difference to be significant)
in proportions can be calculated:

60 = 7.85 × p̄(1 − p̄) × 2 × [1 + (3 − 1) × 0.15]

(p1 − 0.50)2 × 1 × 3

p̄ = p1 + (1 × 0.50)

1 + 1
p1 = ±0.335

In other words, with the characteristics of the experimental study with
a dichotomous outcome variable presented in Chapter 9, a 16.5% (i.e.
50 − 33.5) difference in proportion of recovery between the two groups
will be significant at a 5% level.
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