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Preface

The two most important advantages of this book are (1) the fact that it has
been written by an epidemiologist, and (2) the word ‘applied’, which implies
that the emphasis of this book lies more on the application of statistical tech-
niques for longitudinal data analysis and not so much on the mathematical
background. In most other books on the topic of longitudinal data analysis,
the mathematical background is the major issue, which may not be surprising
since (nearly) all the books on this topic have been written by statisticians.
Although statisticians fully understand the difficult mathematical material
underlying longitudinal data analysis, they often have difficulty in explaining
this complex material in a way that is understandable for the researchers who
have to use the technique or interpret the results. In fact, an epidemiologist is
not primarily interested in the basic (difficult) mathematical background of
the statistical methods, but in finding the answer to a specific research ques-
tion; the epidemiologist wants to know how to apply a statistical technique
and how to interpret the results. Owing to their different basic interests and
different level of thinking, communication problems between statisticians
and epidemiologists are quite common. This, in addition to the growing
interest in longitudinal studies, initiated the writing of this book: a book on
longitudinal data analysis, which is especially suitable for the ‘non-statistical’
researcher (e.g. epidemiologist). The aim of this book is to provide a practi-
cal guide on how to handle epidemiological data from longitudinal studies.
The purpose of this book is to build a bridge over the communication gap
that exists between statisticians and epidemiologists when addressing the
complicated topic of longitudinal data analysis.

Jos Twisk
Amsterdam, January 2002
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Introduction

1.1 Introduction

Longitudinal studies are defined as studies in which the outcome variable
is repeatedly measured; i.e. the outcome variable is measured in the same
individual on several different occasions. In longitudinal studies the obser-
vations of one individual over time are not independent of each other, and
therefore it is necessary to apply special statistical techniques, which take into
account the fact that the repeated observations of each individual are correl-
ated. The definition of longitudinal studies (used in this book) implicates
that statistical techniques like survival analyses are beyond the scope of this
book. Those techniques basically are not longitudinal data analysing tech-
niques because (in general) the outcome variable is an irreversible endpoint
and therefore strictly speaking is only measured at one occasion. After the oc-
currence of an event no more observations are carried out on that particular
subject.

Why are longitudinal studies so popular these days? One of the reasons
for this popularity is that there is a general belief that with longitudinal
studies the problem of causality can be solved. This is, however, a typical
misunderstanding and is only partly true. Table 1.1 shows the most im-
portant criteria for causality, which can be found in every epidemiological
textbook (e.g. Rothman and Greenland, 1998). Only one of them is specific
for a longitudinal study: the rule of temporality. There has to be a time-
lag between outcome variable Y (effect) and predictor variable X (cause);
in time the cause has to precede the effect. The question of whether or not
causality exists can only be (partly) answered in specific longitudinal stud-
ies (i.e. experimental studies) and certainly not in all longitudinal studies
(see Chapter 2). What then is the advantage of performing a longitudinal
study? A longitudinal study is expensive, time consuming, and difficult to
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Table 1.1. Criteria for causality

Strength of the relationship

Consistency in different populations and under different circumstances
Specificity (cause leads to a single effect)

Temporality (cause precedes effect in time)

Biological gradient (dose—response relationship)

Biological plausibility

Experimental evidence

analyse. If there are no advantages over cross-sectional studies why bother?
The main advantage of a longitudinal study compared to a cross-sectional
study is that the individual development of a certain outcome variable over
time can be studied. In addition to this, the individual development of a cer-
tain outcome variable can be related to the individual development of other
variables.

1.2 General approach

The general approach to explain the statistical techniques covered in this
book will be ‘the research question as basis for analysis. Although it may
seem quite obvious, it is important to realize that a statistical analysis has to
be carried out in order to obtain an answer to a particular research question.
The starting point of each chapter in this book will be a research question,
and throughout the book many research questions will be addressed. The
book is further divided into chapters regarding the characteristics of the
outcome variable. Each chapter contains extensive examples, accompanied
by computer output, in which special attention will be paid to interpretation
of the results of the statistical analyses.

1.3 Prior knowledge

Although an attempt has been made to keep the complicated statistical
techniques as understandable as possible, and although the basis of the
explanations will be the underlying epidemiological research question, it
will be assumed that the reader has some prior knowledge about (simple)
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cross-sectional statistical techniques such aslinear regression analysis, logistic
regression analysis, and analysis of variance.

1.4 Example

In general, the examples used throughout this book will use the same lon-
gitudinal dataset. This dataset consists of an outcome variable (Y) that is
continuous and is measured six times. Furthermore there are four predictor
variables, which differ in distribution (continuous or dichotomous) and in
whether they are time dependent or time independent. X; is a continuous
time-independent predictor variable, X, is a continuous time-dependent
predictor variable. X3 is a dichotomous time-dependent predictor variable
and X4 is a dichotomous time-independent predictor variable. All time-
dependent predictor variables are measured at the same six occasions as the
outcome variable Y.

In some examples a distinction will be made between the example dataset
with equally spaced time intervals and a dataset with unequally spaced time
intervals. In the latter, the first four measurements were performed with
yearly intervals, while the fifth and sixth measurements were performed
with 5-year intervals (Figure 1.1).

equally spaced time intervals

Sioinioiolo

3 4 5 6 time (years)

unequally spaced time intervals

RS N SR

time (years)

Figure 1.1. In the example dataset equally spaced time intervals and unequally spaced time
intervals are used.
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Table 1.2. Descriptive information® for an outcome variable Y and predictor
variables X, to X4b measured at six occasions

Time-point Y X3 X, X3 Xy

1 4.43 (0.67) 1.98 (0.22) 3.26 (1.24) 143/4 69/78
2 4.32 (0.67) 1.98 (0.22) 3.36 (1.34) 136/11 69/78
3 4.27 (0.71) 1.98 (0.22) 3.57 (1.46) 124/23 69/78
4 4.17 (0.70) 1.98 (0.22) 3.76 (1.50) 119/28 69/78
5 4.67 (0.78) 1.98 (0.22) 4.35 (1.68) 99/48 69/78
6 5.12 (0.92) 1.98 (0.22) 4.16 (1.61) 107/40 69/78

2 For outcome variable Y and the continuous predictor variables (X; and X,) mean and
standard deviation are given, for the dichotomous predictor variables (X3 and X4) the
numbers of subjects in the different categories are given.

b Y is serum cholesterol in mmol/l; X, is maximal oxygen uptake (in (dl/min)/kg*?);
X is the sum of four skinfolds (in cm); X3 is smoking (non-smokers versus smokers);
X4 is gender (males versus females).

In the chapters dealing with dichotomous outcome variables, the continu-
ous outcome variable Y is dichotomized (i.e. the highest tertile versus the
other two tertiles) and in the chapter dealing with categorical outcome vari-
ables, the continuous outcome variable Y is divided into three equal groups
(i.e. tertiles).

The dataset used in the examples is taken from the Amsterdam Growth
and Health Study, an observational longitudinal study investigating the lon-
gitudinal relation between lifestyle and health in adolescence and young
adulthood (Kemper, 1995). The abstract notation of the different variables
(Y, X; to X4) is used since it is basically unimportant what these variables
actually are. The continuous outcome variable Y could be anything, a certain
psychosocial variable (e.g. a score on a depression questionnaire, an indi-
cator of quality of life, etc.) or a biological parameter (e.g. blood pressure,
albumin concentration in blood, etc.). In this particular dataset the outcome
variable Y was total serum cholesterol expressed in mmol/l. X; was fitness
level at baseline (measured as maximal oxygen uptake on a treadmill), X,
was body fatness (estimated by the sum of the thickness of four skinfolds),
X3 was smoking behaviour (dichotomized as smoking versus non-smoking)
and X4 was gender. Table 1.2 shows descriptive information for the variables
used in the example.
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1.5 Software

The relatively simple analyses of the example dataset were performed with
SPSS (version 9; SPSS, 1997, 1998). For sophisticated longitudinal data
analysis, other software packages were used. Generalized estimating equa-
tions (GEE) were performed with the Statistical Package for Interactive Data
Analysis (SPIDA, version 6.05; Gebski et al., 1992). This statistical package
is not often used, but the output is simple, and therefore very suitable for
educational purposes. For random coefficient analysis STATA (version 7;
STATA, 2001) was used. In Chapter 12, an overview (and comparison) will
be given of other software packages such as SAS (version 8; Littel et al., 1991,
1996), S-PLUS (version 2000; Venables and Ripley, 1997; MathSoft, 2000),
and MLwiN (version 1.02.0002; Goldstein et al., 1998; Rasbash et al., 1999).
In all these packages algorithms to perform sophisticated longitudinal data
analysis are implemented in the main software. Both syntax and output will
accompany the overview of the different packages. For detailed informa-
tion about the different software packages, reference is made to the software
manuals.

1.6 Data structure

It is important to realize that different statistical software packages need
different data structures in order to perform longitudinal analyses. In this
respect a distinction must be made between a ‘long’ data structure and a
‘broad’ data structure. In the ‘long’ data structure each subject has as many
data records as there are measurements over time, while in a ‘broad’ data
structure each subject has one data record, irrespective of the number of
measurements over time. SPSS for instance, uses a broad data structure,
while SAS, MLwiN, S-PLUS, STATA and SPIDA use a ‘long’ data structure
(Figure 1.2).

1.7 Statistical notation

The statistical notation will be very simple and straightforward. Difficult
matrix notation will be avoided as much as possible. Throughout the book
the number of subjects will be denoted asi = 1 to N, the number of times a
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'long' data structure
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Figure 1.2. lllustration of two different data structures.

certain individual is measured will be denoted ast = 1 to T, and the number
of predictor variables will be noted as j = 1 to J. Furthermore, the outcome
variable will be called Y, and the predictor variables will be called X. All other
notations will be explained below the equations where they are used.



Study design

2.1 Introduction

Epidemiological studies can be roughly divided into observational and experi-
mental studies (see Figure 2.1). Observational studies can be further divided
into case—control studies and cohort studies. Case—control studies are never
longitudinal, in the way that longitudinal studies were defined in Chapter 1.
The outcome variable Y (a dichotomous outcome variable distinguishing
‘case’ from ‘control’) is measured only once. Furthermore, case—control stud-
ies are always retrospective in design. The outcome variable Y is observed at a
certain time-point, and the possible predictors are measured retrospectively.

In general, cohort studies can be divided into prospective, retrospective
and cross-sectional cohort studies. A prospective cohort study is the only
cohort study that can be characterized as a longitudinal study. Cohort stud-
ies are usually designed to analyse the longitudinal development of a certain
characteristic over time. It is argued that this longitudinal development con-
cerns growth processes. However, in studies investigating the elderly, the
process of deterioration is the focus of the study, whereas in other develop-
mental processes growth and deterioration can alternately follow each other.
Moreover, in many epidemiological studies one is interested not only in the
actual growth or deterioration over time, but also in the relationship be-
tween the developments of several characteristics over time. In these studies,
the research question to be addressed is whether an increase (or decrease)
in a certain outcome variable Y is associated with an increase (or decrease)
in one or more predictor variables (X). Another important aspect of epi-
demiological observational prospective studies is that sometimes one is not
really interested in growth or deterioration, but rather in the ‘stability’ of a
certain characteristic over time. In epidemiology this phenomenon is known
as tracking (see Chapter 11).



Figure 2.1.

Study design

epidemiological
studies

|
| |

L observational L experimental

cohort study case—control study cohort study

N

— retrospective retrospective prospective

|- cross-sectional

L prospective

Schematic illustration of different epidemiological study designs.

Experimental studies, which in epidemiology are often referred to as clin-
ical trials, are by definition prospective, i.e.longitudinal. The outcome variable
Y is measured at least twice (the classical ‘pre-test, ‘post-test’ design), and
other intermediate measures are usually also added to the research design
(e.g. to evaluate short-term and long-term effects). The aim of an experimen-
tal (longitudinal) study is to analyse the effect of one or more interventions
on a certain outcome variable Y.

In Chapter 1, it was mentioned that some misunderstanding exists with
regard to causality in longitudinal studies. However, an experimental study
or clinical trial is basically the only epidemiological study design in which the
issue of causality can be covered. With observational longitudinal studies,
on the other hand, the question of probable causality remains unanswered.

Most of the statistical techniques in the examples covered in this book will
be illustrated with data from an observational longitudinal study. In a sep-
arate chapter (Chapter 9), examples from experimental longitudinal studies
will be discussed extensively. Although the distinction between experimental
and observational longitudinal studies is obvious, in most situations the stat-
istical techniques discussed for observational longitudinal studies are also
suitable for experimental longitudinal studies.
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Observational longitudinal studies

2.2 Observational longitudinal studies

In observational longitudinal studies investigating individual development,
each measurement taken on a subject at a particular time-point is influenced
by three factors: (1) age (time from date of birth to date of measurement),
(2) period (time or moment at which the measurementis taken), and (3) birth
cohort (group of subjects born in the same year). When studying individual
development, one is mainly interested in the age effect. One of the prob-
lems of most of the designs used in studies of development is that the main
age effect cannot be distinguished from the two other ‘confounding’ effects
(i.e. period and cohort effects).

2.2.1 Period and cohort effects

There is an extensive amount of literature describing age, period and co-
hort effects (e.g. Lebowitz, 1996; Robertson et al., 1999). However, most
of the literature deals with classical age—period—cohort models, which are
used to describe and analyse trends in (disease-specific) morbidity and mor-
tality (e.g. Kupper et al., 1985; Mayer and Huinink, 1990; Holford, 1992;
McNally et al., 1997; Robertson and Boyle, 1998). In this book, the main
interests are the individual development over time, and the ‘longitudinal’
relationship between different variables. In this respect, period effects or
time of measurement effects are often related to a change in measurement
method over time, or to specific environmental conditions at a particular
time of measurement. An example is given in Figure 2.2. This figure shows
the longitudinal development of physical activity with age. Physical activity
patterns were measured with a five-year interval, and were measured during
the summer in order to minimize seasonal influences. The first measure-
ment was taken during a summer with normal weather conditions. During
the summer when the second measurement was taken, the weather condi-
tions were extremely good, resulting in activity levels that were very high.
At the time of the third measurement the weather conditions were compar-
able to the weather conditions at the first measurement, and therefore the
physical activity levels were much lower than those recorded at the second
measurement. When all the results are presented in a graph, it is obvious that
the observed age trend is highly biased by the ‘period’ effect at the second
measurement.
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physical activity (arbitrary units)

10 15 20

age (years)

Figure 2.2. lllustration of a possible time of measurement effect (- — - ‘real’ age trend, —
observed age trend).

body height (arbitrary units)

5 10 15

age (years)

Figure 2.3. lllustration of a possible cohort effect (— — — cohort specific, —— observed).

One of the most striking examples of a cohort effect is the development of
body height with age. There is an increase in body height with age, but this
increase is highly influenced by the increase in height of the birth cohort.
This phenomenon is illustrated in Figure 2.3. In this hypothetical study,
two repeated measurements were carried out in two different cohorts. The
purpose of the study was to detect the age trend in body height. The first
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age

time of measurement

Figure 2.4. Principle of a multiple longitudinal design; repeated measurements of different

cohorts with overlapping ages (m cohort 1, * cohort 2,  cohort 3).

cohort had an initial age of 5 years; the second cohort had an initial age of
10 years. At the age of 5, only the first cohort was measured, at the age of 10,
both cohorts were measured, and at the age of 15 only the second cohort
was measured. The body height obtained at the age of 10 is the average value
of the two cohorts. Combining all measurements in order to detect an age
trend will lead to a much flatter age trend than the age trends observed in
both cohorts separately.

Both cohort and period effects can have a dramatic influence on interpre-
tation of the results of longitudinal studies. An additional problem is that it
is very difficult to disentangle the two types of effects. They can easily occur
together. Logical considerations regarding the type of variable of interest can
give some insight into the plausibility of either a cohort or a period effect.
When there are (confounding) cohort or period effects in a longitudinal
study, one should be very careful with the interpretation of age-related results.

It is sometimes argued that the design that is most suitable for study-
ing individual growth/deterioration processes is a so-called ‘multiple lon-
gitudinal design’ In such a design the repeated measurements are taken in
more than one cohort with overlapping ages (Figure 2.4). With a ‘multiple
longitudinal design’ the main age effect can be distinguished from cohort and
period effects. Because subjects of the same age are measured at different
time-points, the difference in outcome variable Y between subjects of the
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arbitrary value

age

Figure 2.5. Possibility of detecting cohort effects in a ‘multiple longitudinal design’ (* cohort 1,
m cohort 2, e cohort 3).

arbitrary value

S

age

Figure 2.6. Possibility of detecting time of measurement effects in a ‘multiple longitudinal
design’ (* cohort 1, m cohort 2, e cohort 3).

same age, but measured at different time-points, can be investigated in order
to detect cohort effects. Figure 2.5 illustrates this possibility: different cohorts
have different values at the same age.

Because the different cohorts are measured at the same time-points, it is
also possible to detect possible time of measurement effects in a ‘multiple
longitudinal design’. Figure 2.6 illustrates this phenomenon. All three cohorts



13

Figure 2.7.

Observational longitudinal studies
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Test or learning effects; comparison of repeated measurements of the same
subjects with non-repeated measurements in comparable subjects (different
symbols indicate different subjects, - cross-sectional, — longitudinal).

show an increase in the outcome variable at the second measurement, which
indicates a possible time of measurement effect.

2.2.2 Other confounding effects

In studies investigating development, in which repeated measurements of
the same subjects are performed, cohort and period effects are not the only
possible confounding effects. The individual measurements can also be in-
fluenced by a changing attitude towards the measurement itself, a so-called
test or learning effect. This test or learning effect, which is illustrated in
Figure 2.7, can be either positive or negative.

One of the most striking examples of a positive test effect is the mea-
surement of memory in older subjects. It is assumed that with increas-
ing age, memory decreases. However, even when the time interval between
subsequent measurements is as long as three years, an increase in memory
performance with increasing age can be observed: an increase which is totally
due to a learning effect (Dik et al., 2001).

Furthermore, missing data or drop-outs during follow-up can have im-
portant implications for the interpretation of the results of longitudinal data
analysis. This important issue will be discussed in detail in Chapter 10.

Analysis based on repeated measurements of the same subject can also
be biased by a low degree of reproducibility of the measurement itself. This



14

Study design

is quite important because the changes over time within one subject can
be ‘overruled’ by a low reproducibility of the measurements. An indication
of reproducibility can be provided by analysing the inter-period correla-
tion coefficients (IPC) (van ‘t Hof and Kowalski, 1979). It is assumed that
the IPCs can be approximated by a linear function of the time interval.
The IPC will decrease as the time interval between the two measurements
under consideration increases. The intercept of the linear regression line
between the IPC and the time interval can be interpreted as the instan-
taneous measurement—remeasurement reproducibility (i.e. the correlation
coefficient with a time interval of zero). Unfortunately, there are a few short-
comings in this approach. For instance, a linear relationship between the
IPC and the time interval is assumed, and it is questionable whether that
is the case in every situation. When the number of repeated measurements
is low, the regression line between the IPC and the time interval is based
on only a few data points, which makes the estimation of this line rather
unreliable. Furthermore, there are no objective rules for the interpretation
of this reproducibility coefficient. However, it must be taken into account
that low reproducibility of measurements can seriously influence the results
of longitudinal analysis.

2.2.3 Example

Table 2.1 shows the inter-period correlation coefficients (IPC) for outcome
variable Y in the example dataset. To obtain a value for the measurement—
remeasurement reproducibility, a linear regression analysis between the
length of the time interval and the IPCs was carried out. The value of the
intercept of that particular regression line can be seen as the IPC for a time
interval with a length of zero, and can therefore be interpreted as a repro-
ducibility coefficient (Figure 2.8).

The result of the regression analysis shows an intercept of 0.81, i.e. the
reproducibility coefficient of outcome variable Y is 0.81. It has already been
mentioned that it is difficult to provide an objective interpretation of this co-
efficient. Another important issue is that the interpretation of the coefficient
highly depends on the explained variance (R?) of the regression line (which
is 0.67 in this example). In general, the lower the explained variance of the
regression line, the more variation in IPCs with the same time interval, and
the less reliable the estimation of the reproducibility coefficient.
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Table 2.1. Inter-period correlation coefficients (IPC) for outcome variable Y

Yt 1 Ytz Yt3 Yt4 YtS Yt6
Yu — 0.76 0.70 0.67 0.64 0.59
Yio — 0.77 0.78 0.67 0.59
Yi — 0.85 0.71 0.63
Yiq — 0.74 0.65
Yis — 0.69

correlation coefficient

0.2

0 1 2 3 4 5

time interval (years)

Figure 2.8. Linear regression line between the inter-period correlation coefficients and the
length of the time interval.

2.3 Experimental (longitudinal) studies

Experimental (longitudinal) studies are by definition prospective cohort
studies. A distinction can be made between randomized and non-randomized
experimental studies. In epidemiology, randomized experimental studies are
often referred to as randomized clinical trials (RCTs). In randomized ex-
perimental studies the subjects are randomly assigned to the experiment,
i.e. intervention (or interventions) under study. The main reason for this
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Figure 2.9.

Study design
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An illustration of a few experimental longitudinal designs: (1) ‘classic’ experimental
design, (2) ‘classic’ experimental design with baseline measurement, (3)
'Solomon four group’ design, (4) factorial design and (5) ‘cross-over' design.

randomization is to make the groups to be compared as equal as possible at
the start of the intervention.

It is not the purpose of this book to give a detailed description of all
possible experimental designs. Figure 2.9 summarizes a few commonly used
experimental designs. For an extensive overview of this topic, reference is
made to other books (e.g. Pockok, 1983; Judd et al., 1991; Rothman and
Greenland, 1998).

In the classical randomized experimental design, the population under
study is randomly divided into an intervention group and a non-intervention
group (e.g. a placebo group or a group with ‘usual’ care, etc.). The groups
are then measured after a certain period of time to investigate the differences
between the groups in the outcome variable. Usually, however, a baseline
measurement is performed before the start of the intervention. The so-called
‘Solomon four group’ design is a combination of the design with and without
a baseline measurement. The idea behind this design is that when a baseline
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measurement is performed there is a possibility of test or learning effects,
and with a ‘Solomon four group’ design these test or learning effects can be
detected. In a factorial design, two or more interventions are combined into
one experimental study.

In the experimental designs discussed before, the subjects are randomly
assigned to two or more groups. In studies of this type, basically all subjects
have missing data for all other conditions, except the intervention to which
they have been assigned. In contrast, it is also possible that all of the sub-
jects are assigned to all possible interventions, but that the sequence of the
different interventions is randomly assigned to the subjects. Experimental
studies of this type are known as ‘cross-over trials. They are very efficient
and very powerful, but they can only be performed for short-lasting outcome
measures.

Basically, all the ‘confounding’ effects described for observational lon-
gitudinal studies (Section 2.2) can also occur in experimental studies. In
particular, missing data or drop-outs are a major problem in experimental
studies (see Chapter 10). Test or learning effects can be present, but cohort
and time of measurement effects are less likely to occur.

It has already been mentioned that for the analysis of data from experi-
mental studies all techniques that will be discussed in the following chapters,
with examples from an observational longitudinal study, can also be used.
However, Chapters 8 and 9 especially will provide useful information regard-
ing the data analysis of experimental studies.
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The simplest form of longitudinal study is that in which a continuous out-
come variable Y is measured twice in time (Figure 3.1). With this simple
longitudinal design the following question can be answered: ‘Does the out-
come variable Y change over time?’ Or, in other words: ‘Is there a difference
in the outcome variable Y between t; and t,?

To obtain an answer to this question, a paired t-test can be used. Consider
the hypothetical dataset presented in Table 3.1. The paired t-test is used to
test the hypothesis that the mean difference between Yi; and Yi, equals zero.
Because the individual differences are used in this statistical test, it takes into
account the fact that the observations within one individual are dependent
on each other. The test statistic of the paired t-test is the average of the
differences divided by the standard deviation of the differences divided by
the square root of the number of subjects (Equation (3.1)).

(=9 (3.1)

(%)

VN

wheret is the test statistic, d is the average of the differences, S4 is the standard
deviation of the differences, and N is the number of subjects.

This test statistic follows a t-distribution with (N — 1) degrees of freedom.
The assumptions for using the paired t-test are twofold, namely (1) that
the observations of different subjects are independent and (2) that the dif-
ferences between the two measurements are approximately normally dis-
tributed. In research situations in which the number of subjects is quite large
(say above 25), the paired t-test can be used without any problems. With
smaller datasets, however, the assumption of normality becomes important.
When the assumption is violated, the non-parametric equivalent of the
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Table 3.1. Hypothetical dataset for a longitudinal
study with two measurements

i Yi1 Ytz Difference (d)
1 3.5 3.7 —0.2
2 4.1 4.1 0.0
3 3.8 3.5 0.3
4 3.8 3.9 —0.1
N 4.0 4.6 —0.6

arbitrary value

time

Figure 3.1. Longitudinal study with two measurements.

paired t-test can be used (see Section 3.2). In contrast to its non-parametric
equivalent, the paired t-test is not only a testing procedure. With this statist-
ical technique the average of the paired differences with the corresponding
95% confidence interval can also be estimated.

It should be noted that when the differences are not normally distributed
and the sample size is rather large, the paired t-test provides valid results,
but interpretation of the average differences can be complicated, because the
average is not a good indicator of the mid-point of the distribution.
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3.1.1 Example

One of the limitations of the paired t-test is that the technique is only suit-
able for two measurements over time. It has already been mentioned that the
example dataset used throughout this book consists of six measurements. To
illustrate the paired t-test in the example dataset, only the first and last meas-
urements of this dataset are used. The question to be answered is: ‘Is there
a difference in outcome variable Y between t = 1 and t = 62’ Output 3.1
shows the results of the paired t-test.

Output 3.1. Results of a paired t-test performed on the example dataset

t-Tests for Paired Samples

Number of 2-tail
Variable pairs Corr Sig Mean SD SE of Mean
YT1 OUTCOME VARIABLE Y AT T1 4.4347 0.674 0.056

147 0.586 0.000
YT6 OUTCOME VARIABLE Y AT T6 5.1216 0.924 0.076

Paired Differences

Mean SD SE of Mean t-value df 2-tail Sig
-0.6869 0.760 0.063 -10.96 146 0.000
95% CI (-0.811, -0.563)

The first lines of the output give descriptive information (i.e. mean val-
ues, standard deviation (SD), number of pairs, etc.), which is not really
important in the light of the postulated question. The second part of the
output provides the more important information. First of all, the mean
of the paired differences is given (i.e. —0.6869), and also the 95% confid-
ence interval (CI) around this mean (—0.811 to —0.563). A negative value
indicates that there is an increase in outcome variable Y between t =1
and t = 6. Furthermore, the results of the actual paired t-test are given:
the value of the test statistic (t = —10.96), with (N — 1) degrees of free-
dom (146), and the corresponding p-value (0.000). The results indicate that
the increase in outcome variable Y is statistically significant (p < 0.001).
The fact that there is a significant increase over time was already clear in
the 95% confidence interval of the mean difference, which did not include
Z€ero.
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Table 3.2. Hypothetical dataset for a longitudinal study with
two measurements

i ' Yi Difference (d) Rank number

1 3.5 3.7 —0.2 3

2 4.1 4.0 0.1 1.5%

3 3.8 3.5 0.3 4

4 3.8 3.9 —0.1 1.5%

5 4.0 4.4 —0.4 5

6 4.1 4.9 —0.8 7

7 4.0 3.4 0.6 6

8 5.1 6.8 —1.7 9

9 3.7 6.3 —2.6 10
10 4.1 5.2 —1.1 8

2 The average rank is used for tied values.

3.2 Non-parametric equivalent of the paired ¢-test

When the assumptions of the paired t-test are violated, it is possible to
perform the non-parametric equivalent of the paired t-test, the (Wilcoxon)
signed rank sum test. This signed rank sum test is based on the ranking of
the individual difference scores, and does not make any assumptions about
the distribution of the outcome variable. Consider the hypothetical dataset
presented in Table 3.2. The dataset consists of 10 subjects, who were measured
on two occasions.

The signed rank sum test evaluates whether the sum of the rank numbers
with a positive difference is equal to the sum of the rank numbers with a neg-
ative difference. When those two are equal, it suggests that there is no change
over time. In the hypothetical dataset the sum of the rank numbers with a
positive difference is 11.5 (i.e. 1.5 4+ 4 + 6), while the sum of the rank num-
bers with a negative difference is 43.5. The exact calculation of the level of
significance is very complicated, and goes beyond the scope of this book. All
statistical handbooks contain tables in which the level of significance can be
found (see for instance Altman, 1991), and with all statistical software pack-
ages the levels of significance can be calculated. For the hypothetical example,
the p-valueisbetween 0.2 and 0.1, indicating no significant change over time.
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The (Wilcoxon) signed rank sum test can be used in all longitudinal stud-
ies with two measurements. It is a testing technique which only provides
p-values, without effect estimation. In ‘real life’ situations, it will only be
used when the sample size is very small (i.e. less than 25).

3.2.1 Example

Although the sample size in the example dataset is large enough to perform a
paired t-test, in order to illustrate the technique the (Wilcoxon) signed rank
sum test will be used to test whether or not the difference between Y att = 1
and Y att = 6 is significant. Output 3.2 shows the results of this analysis.

Output 3.2. Output of the (Wilcoxon) matched pairs signed
rank sum test

Wilcoxon Matched-pairs Signed-ranks Test

YT1 OUTCOME VARIABLE Y AT T1
with YT6 OUTCOME VARIABLE Y AT T6
Mean Rank Cases
34.84 29 - Ranks (YT6 Lt YTI1)
83.62 118 + Ranks (YT6 Gt YT1)
0 Ties (YT6 Eg YT1)
147 Total
Z = -8.5637 2-tailed P = 0.0000

The first part of the output provides the mean rank of the rank numbers
with a negative difference and the mean rank of the rank numbers with a
positive difference. It also gives the number of cases with a negative and a
positive difference. A negative difference corresponds with the situation that
Y att = 6islessthanY att = 1. This corresponds with a decrease in outcome
variable Y over time. A positive difference corresponds with the situation
that Y att = 6 is greater than Y at t = 1, i.e. corresponds with an increase
in Y over time. The last line of the output shows the Z-value. Although
the (Wilcoxon) signed rank sum test is a non-parametric equivalent of the
paired t-test, in many software packages a normal approximation is used
to calculate the p-value. This Z-value corresponds with a highly significant
p-value (0.0000), which indicates that there is a significant change (increase)
over time in outcome variable Y . Because there is a highly significant change
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over time, the p-value obtained from the paired t-test is the same as the
p-value obtained from the signed rank sum test. In general, however, the
non-parametric tests are less powerful than the parametric equivalents.

3.3 More than two measurements

In a longitudinal study with more than two measurements performed on the
same subjects (Figure 3.2), the situation becomes somewhat more complex.
A design with only one outcome variable, which is measured several times
on the same subjects, is known as a ‘one-within’ design. This refers to the fact
that there is only one factor of interest (i.e. time) and that this factor varies
only within individuals. In a situation with more than two repeated meas-
urements, a paired t-test cannot be carried out. Consider the hypothetical
dataset, which is presented in Table 3.3.

The question: ‘Does the outcome variable Y change over time?’ can be
answered with multivariate analysis of variance (MANOVA) for repeated
measurements. The basic idea behind this statistical technique is the same as
for the paired t-test. The statistical test is carried out for the T — 1 absolute

arbitrary value

time

Figure 3.2. Longitudinal study with six measurements.
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Table 3.3. Hypothetical dataset for a longitudinal study with more than
two measurements

[ Yu Yo d, Yis dz e Yis ds
1 3.5 3.7 —0.2 3.9 —0.2 3.0 0.2
2 4.1 4.1 0.0 4.2 —0.1 4.6 0.0
3 3.8 3.5 0.3 3.5 0.0 3.4 —0.4
4 3.8 3.9 —0.1 3.8 0.1 3.8 0.3
N 4.0 4.6 —0.6 4.7 —0.1 4.3 0.1

differences between subsequent measurements. In fact, MANOVA for re-
peated measurements is a multivariate analysis of these T — 1 absolute dif-
ferences between subsequent time-points. Multivariate refers to the fact that
T — 1 differences are used simultaneously as outcome variable. The T — 1
differences and corresponding variances and covariances form the test statis-
tic for the MANOVA for repeated measurements (Equation (3.2)).

[ N-T+1 ,
" _<<N—1><T—1)>H 2
H2 _ Néézyd (3.2b)
d

where F is the test statistic, N is the number of subjects, T is the num-
ber of repeated measurements, y; is the row vector of differences between
subsequent measurements, Yy is the column vector of differences between
subsequent measurements, and Sé is the variance/covariance matrix of the
differences between subsequent measurements.

The F-statistic follows an F-distribution with (T — 1), (N — T 4 1) de-
grees of freedom. For a detailed description of how to calculate H? using
Equation (3.2b), reference should be made to other textbooks (Crowder and
Hand, 1990; Hand and Crowder, 1996; Stevens, 1996)'. As with all statist-
ical techniques, MANOVA for repeated measurements is based on several

! H2 is also known as Hotelling’s T2, and is often referred to as T2. Because throughout this book T is
used to denote the number of repeated measurements, H? is the preferred notation for this statistic.
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assumptions. These assumptions are more or less comparable with the
assumptions of a paired t-test: (1) observations of different subjects at each
of the repeated measurements need to be independent, and (2) the obser-
vations need to be multivariate normally distributed, which is comparable
but slightly more restrictive than the requirement that the differences be-
tween subsequent measurements be normally distributed. The calculation
procedure described above is called the ‘multivariate’ approach because sev-
eral differences are analysed together. However, to answer the same research
question, a ‘univariate’ approach can also be followed. This ‘univariate’ pro-
cedure is comparable to the procedures carried out in simple analysis of
variance (ANOVA) and is based on the ‘sum of squares), i.e. squared differ-
ences between observed values and average values. The ‘univariate’ approach
is only valid when, in addition to the earlier mentioned assumptions, an extra
assumption is met: the assumption of ‘sphericity’. This assumption is also
known as the ‘compound symmetry’ assumption. It applies, firstly, when
all correlations in outcome variable Y between repeated measurements are
equal, irrespective of the time interval between the measurements. Secondly,
the variances of outcome variable Y must be the same at each of the repeated
measurements.

Whether or not the assumption of sphericity is met can be expressed by
the sphericity coefficient (noted as €). In an ideal situation the sphericity
coefficient will equal one, and when the assumption is not entirely met, the
coefficient will be less than one. In this case the degrees of freedom of the
F-test used in the ‘univariate’ approach can be changed: instead of (T — 1),
(N — 1)(T — 1) the degrees of freedom willbe e (T — 1), e(N — 1)(T — 1).
It should be noted that the degrees of freedom for the ‘univariate’ approach
are different from the degrees of freedom for the ‘multivariate’ approach.
In many software packages, when MANOVA for repeated measurements
is carried out, the sphericity coefficient is automatically estimated and the
degrees of freedom are automatically adapted. The sphericity coefficient can
also be tested for significance (with the null hypotheses tested: sphericity
coefficient € = 1). However, one must be very careful with the use of this
test. If the sample size is large, the test for sphericity will (almost) always give
a significant result, whereas in a study with a small sample size the test for
sphericity will (almost) never give a significant result. In the first situation,
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Table 3.4. Hypothetical longitudinal dataset with four
measurements in six subjects

i Ytl Y’[2 Yt3 Yt4 Mean
1 31 29 15 26 25.25
2 24 28 20 32 26.00
3 14 20 28 30 23.00
4 38 34 30 34 34.00
5 25 29 25 29 27.00
6 30 28 16 34 27.00
Mean 27.00 28.00 22.33 30.83 27.00

the test is over-powered, which means that even very small violations of the
assumption of sphericity will be detected. In studies with small sample sizes,
the test will be under-powered, i.e. the power to detect a violation of the
assumption of sphericity is too low.

In the next section a numerical example will be given to explain the ‘uni-
variate’ approach within MANOVA for repeated measurements.

‘univariate’ approach: a numerical example
Consider the simple longitudinal dataset presented in Table 3.4.

When ignoring the fact that each individual is measured four times, the
question of whether there is a difference between the various time-points can
be answered by applying a simple ANOVA, considering the measurements
at the four time-points as four independent groups. The ANOVA is then
based on a comparison between the ‘between group’ (in this case ‘between
time’) sum of squares (SSp) and the ‘within group’ (i.e. ‘within time’) sum
of squares (SS,,). The latter is also known as the ‘overall’ sum of squares or
the ‘error’ sum of squares. The sums of squares are calculated as follows:

.
$Sy=N> (3, — )’ (3.3)
t=1

where N is the number of subjects, T is the number of repeated measure-
ments, ¥t is the average value of outcome variable Y at time-point t, and y
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is the overall average of outcome variable Y.
T

N
SSw=)_ > (it — yu)? (3.4)
=1

t=1n

where T is the number of repeated measurements, N is the number of sub-
jects, Vit is the value of outcome variable Y for individual i at time-point t,
and Y is the average value of outcome variable Y at time-point t.

Applied to the dataset presented in Table 3.4, SS, = 6[(27 — 27)? + (28 —
27)% 4+ (22.33 — 27)® + (30.83 — 27)?] = 224.79, and SS,, = (31 — 27)* +
(24 —27)* 4 -+ + (29 — 30.83)* + (34 — 30.83)> = 676.17. These sums of
squares are used in the ANOVA’s F-test. In this test it is not the total sums of
squares that are used, but the mean squares. The mean square (MS) is de-
fined as the total sum of squares divided by the degrees of freedom. For SSy,
the degrees of freedom are (T — 1), and for SS,,, the degrees of freedom
are (T) x (N —1). In the numerical example, MS, = 224.79/3 = 74.93
and MS,, = 676.17/20 = 33.81. The F-statistic is equal to MS,/MS,, and
follows an F-distribution with ((T — 1), (T(N — 1)) degrees of freedom.
Applied to the example, the F-statistic is 2.216 with 3 and 20 degrees of
freedom. The corresponding p-value (which can be found in a table of the
F-distribution, available in all statistical textbooks) is 0.12, i.e. no significant
difference between the four time-points. Output 3.3 shows the results of the
ANOVA, applied to this numerical example.

Output 3.3. Results of an ANOVA with a simple longitudinal dataset,
ignoring the dependency of observations

Source Sum of squares df Mean square F Sig
Between groups 224.792 3 74.931 2.216 0.118
Within groups 676.167 20 33.808

Total 900.958 23

It has already been mentioned that in the above calculation the depend-
ency of the observations was ignored. It was ignored that the same individ-
ual was measured four times. In a design with repeated measurements, the
‘individual’ sum of squares (SS;) can be calculated (Equation (3.5)).

N
$S=T> (Vi — ) (3.5)

i=1
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where T is the number of repeated measurements, N is the number of sub-
jects, Yi is the average value of outcome variable Y at all time-points for
individual i, and ¥ is the overall average of outcome variable Y.

Applied to the example dataset, SS; = 4[(25.25 — 27)? + (26 — 27)% +
.-+ (27 —27)?] =276.21. It can be seen that a certain proportion
(276.21/676.17) of the error sum of squares (i.e. the within-time sum of
squares) can be explained by individual differences. So, in this design with
repeated measurements, the total error sum of squares of 676.17 is split into
two components. The part which is due to individual differences (276.21) is
now removed from the error sum of squares for the time effect. The latter is
reduced to 399.96 (i.e. 676.17 — 276.21). The SSy, is still the same, because
this sum of squares reflects the differences between the four time-points.
Output 3.4 shows the computer output of this example.

Output 3.4. Results of a MANOVA for repeated measurements with a
simple longitudinal dataset

Within-subjects effects

Source Sum of sqguares df Mean square F Sig
TIME 224.792 3 74.931 2.810 0.075
Error (TIME) 399.958 15 26.664

Between-subjects effects

Source Sum of sqguares df Mean square F Sig
Intercept 17550.042 1 17550.042 317.696 0.000
Error 276.208 5 55.242

As mentioned before for the ANOVA, to carry out the F-test, the total sum
of squares is divided by the degrees of freedom to create the ‘mean square’.
To obtain the appropriate F-statistic, the ‘mean square’ of a certain effect is
divided by the ‘mean square’ of the error of that effect. The F-statisticisused in
the testing procedure of that particular effect. As can be seen from Output 3.4,
the SS, is divided by (T — 1) degrees of freedom, while the corresponding
error term is divided by (T — 1) x (N — 1) degrees of freedom. The p-value
is 0.075, which indicates no significant change over time. Note, however,
that this p-value is somewhat lower than the p-value obtained from the
simple ANOVA, in which the dependency of the observations was ignored.
The intercept sum of squares is the sum of squares obtained when an overall
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average of zero is assumed. In this situation, the intercept sum of squares
is useless, but it will be used in the analysis to investigate the shape of the
relationship between the outcome variable Y and time.

3.3.2 The shape of the relationship between an outcome variable and time
In the foregoing sections of this chapter, the question of whether or not
there is a change over time in outcome variable Y was answered. When such
achange over time is found, this implies that there is some kind of relationship
between the outcome variable Y and time. In this section the shape of the
relationship between outcome variable Y and time will be investigated. In
Figure 3.3 a few possible shapes are illustrated.

It is obvious that this question is only of interest when there are more
than two measurements. When there are only two measurements, the only
possible relationship with time is a linear one. The question about the shape
of the relationship can also be answered by applying MANOVA for repeated
measurements. In MANOVA, the relationship between the outcome variable
Y and time is compared to a hypothetical linear relationship, a hypothetical
quadratic relationship, and so on. When there are T repeated measurements,
T — 1 possible functions with time can be tested. Although every possible

arbitrary value

time

Figure 3.3. A few possible shapes of relationship between an outcome variable Y and time
(meeeenene linear, o quadratic, *— — — cubic).
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Table 3.5. Transformation ‘factors’ used to test
different shapes of the relationship between an
outcome variable and time

Linear Quadratic Cubic
Ya —0.671 0.500 —0.224
Yt2 —0.224 —0.500 0.671
Yi3 0.224 —0.500 —0.671
Yia 0.671 0.500 0.224

relationship with time can be tested, it is important to have a certain idea or
hypothesis of the shape of the relationship between the outcome variable
Y and time. It is highly recommended not to test all possible relationships
routinely.

For each possible relationship, an F-statistic is calculated which follows
an F-distribution with (1), (N — 1) degrees of freedom. The shape of the
relationship between the outcome variable and time can only be analysed
with the ‘univariate’ estimation approach. In the following section this will
be illustrated with a numerical example.

3.3.3 A numerical example

Consider the same simple longitudinal dataset that was used in Section 3.3.1.
To answer the question: ‘What is the shape of the relationship between the
outcome variable Y and time?’, the outcome variable Y must be transformed.
When there are four repeated measurements, Y is transformed into a linear
component, a quadratic component and a cubic component. This trans-
formation is made according to the transformation ‘factors’ presented in
Table 3.5.

Each value of the original dataset is now multiplied by the corresponding
transformation ‘factor’ to create a transformed dataset. Table 3.6 presents
the linear transformed dataset. The asterisk above the name of a variable
indicates that the variable is transformed.

These transformed variables are now used to test the different relationships
with time. Assume that one is interested in the possible linear relationship
with time. Therefore, the individual sum of squares for the linear transformed
variables is related to the individual sum of squares calculated when the
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Table 3.6. Original dataset transformed by linear
transformation ‘factors’

i Ytl * Y’[Z* YB* Yt4* Mean
1 —20.8 —6.5 3.4 17.5 —1.62
2 —16.1 —6.3 4.5 21.5 0.89
3 —-9.4 —4.5 6.3 20.1 3.13
4 —25.5 —7.6 6.7 22.8 —0.90
5 —16.8 —6.5 5.6 19.5 0.45
6 —20.1 —6.3 3.6 22.8 0.00
Mean 0.33

overall mean value of the transformed variables is assumed to be zero (i.e.
the intercept).

The first step is to calculate the individual sum of squares for the trans-
formed variables according to Equation (3.5). For the transformed dataset
SSi* = 4[(—1.62 — 0.33)* 4 (0.89 — 0.33)2 + - - - 4 (0.00 — 0.33)*] = 54.43.
The next step is to calculate the individual sum of squares when the overall
mean value is assumed to be zero. When this calculation is performed for
the transformed dataset SS;° = 4[(—1.62 — 0.00)? + (0.89 — 0.00)> + - - -
+ (0.00 — 0.00)?] = 56.96.

The difference between these two individual sums of squares is called the
‘intercept’ and is shown in the computer output (see Output 3.5). In the
example, this intercept is equal to 2.546, and this value is used to test for
the linear development over time. The closer this difference comes to zero,
the less likely it is that there is a linear relationship with time. In the exam-
plethe p-value of the intercept is 0.65, which is far from significance, i.e. there
is no significant linear relationship between the outcome variable and time.

Output 3.5. Results of MANOVA for repeated measurements, applied to the
linear transformed dataset

Between-subjects effects

Source Sum of squares df Mean square F Sig
Intercept 2.546 1 2.546 0.234 0.649
Error 54.425 5 10.885
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When MANOVA for repeated measurements is performed on the orig-
inal dataset used in Section 3.3.1, these transformations are automatically
carried out and the related test values are shown on the output. Because the
estimation procedure is slightly different to that explained here, the sums of
squares given in this output are the sums of squares given in the output (see
Output 3.6) multiplied by T. Because it is basically the same approach, the
levels of significance are exactly the same.

Output 3.6. Results of MANOVA for repeated measurements, applied to the
original dataset, analysing the linear relationship between the outcome
variable and time

Within-subjects contrasts

Source Sum of squares df Mean square F Sig
Time (linear) 10.208 1 10.208 0.235 0.649
Error (linear) 217.442 5 43.488

Exactly the same procedure can be carried out to test for a possible second-
order (quadratic) relationship with time and for a possible third-order
(cubic) relationship with time.

3.3.4 Example

The results of the MANOVA for repeated measurements of a ‘one-within’
design to answer the question of whether there is a change over time in
outcome variable Y (using the information of all six repeated measurements)
is shown in Output 3.7.

Output 3.7. Results of MANOVA for repeated measurements; a ‘one-within' design

Multivariate tests®

Partial Eta

Effect Value F Hypothesis df Error df Sig Squared

TIME Pillai's Trace 0.666 56.615" 5.000 142.000 0.000 0.666
Wilks'Lambda 0.334 56.615" 5.000 142.000 0.000 0.666
Hotelling's Trace 1.993 56.615° 5.000 142.000 0.000 0.666
Roy's Largest Root 1.993 56.615° 5.000 142.000 0.000 0.666

?Design: Intercept
Within subjects design: TIME

PExact statistic.
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Mauchly’s test of sphericity

Measure: MEASURE_1

Within Epsilon®

Subjects APProx. Greenhouse

Effect Mauchly's W Chi-Square df Sig —Geisser Huynh—Feldt Lower-bound
TIME 0.435 119.961 14 0.000 0.741 0.763 0.200

Tests the null hypothesis that the error covariance matrix of the orthonormalized
transformed dependent variables is proportional to an identity matrix.

?Design: Intercept

Within subjects design: TIME

PMay be used to adjust the degrees of freedom for the averaged tests of
significance. Corrected tests are displayed in the tests of within-subjects effects
table.

Tests of within-subjects effects

Measure: MEASURE_1

Type III
Sum of Mean Partial Eta

Source Squares df Square F Sig Squared
TIME Sphericity Assumed 89.987 5 17.997 99.987 0.000 0.406

Greenhouse—Geisser 89.987 3.707 24.273 99.987 0.000 0.406

Huynh—-Feldt 89.987 3.816 23.582 99.987 0.000 0.406

Lower-bound 89.987 1.000 89.987 99.987 0.000 0.406
Error (TIME) Sphericity Assumed 131.398 730 0.180

Greenhouse—Geisser 131.398 541.272 0.243

Huynh—Feldt 131.398 557.126 0.236

Lower-bound 131.398 146.000 0.900
Tests of within-subjects contrasts
Measure: MEASURE_1

Type III Sum Partial Eta

Source TIME of Squares df Mean Square F Sig Squared
TIME Linear 40.332 1 40.332 126.240 0.000 0.464

Quadratic 44.283 1 44.283 191.356 0.000 0.567

Cubic 1.547 1 1.547 11.424 0.001 0.073

Order 4 1.555 1 1.555 12.537 0.001 0.079

Order 5 2.270 1 2.270 25.322 0.000 0.148
Error (TIME) Linear 46.646 146 0.319

Quadratic 33.787 146 0.231

Cubic 19.770 146 0.135

Order 4 18.108 146 0.124

Order 5 13.088 146 8.964 x 1072
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The first part of the output (multivariate tests) shows directly the answer
to the question of whether there is a change over time for outcome variable Y,
somewhere betweent = 1andt = 6. The F-values and the significance levels
are based on the multivariate test. In the output there are several multivariate
tests available to test the overall time effect. The various tests are named after
the statisticians who developed the tests, and they all use slightly different
estimation procedures. However, the final conclusions of the various tests
are almost always the same.

The second part of Output 3.7 provides information on whether or not
the assumption of sphericity is met. In this example, the sphericity coeffi-
cient (epsilon) calculated by the Greenhouse—Geisser method is 0.741. The
output also gives other values for € (Huynh—Feldt and lower-bound), but
these values are seldom used. The value of € can be tested for significance by
Mauchly’s test of sphericity. The results of this test ( p-value 0.000) indicates
that € is significantly different from the ideal value of one. This indicates
that the degrees of freedom of the F-test should be adjusted. In the com-
puter output presented, this correction is automatically carried out and is
shown in the next part of the output (tests of within-subject effects), which
shows the result of the ‘univariate’ estimation approach. The output of the
‘univariate’ approach gives four different estimates of the overall time ef-
fect. The first estimate is the one which assumes sphericity. The other three
estimates (Greenhouse—Geisser, Huynh—Feldt and lower-bound) adjust for
violations of the assumption of sphericity, by changing the degrees of free-
dom. The three techniques are slightly different, but it is recommended
that the Greenhouse—Geisser adjustment is used, although this adjustment
is slightly conservative. From the output it can be seen that the F-values
and significance levels are equal for all estimation procedures. They are all
highly significant, which indicates that there is a significant change over
time in outcome variable Y. From the output, however, there is no indica-
tion of whether there is an increase, a decrease or whatever; it only shows
a significant difference over time. Within MANOVA for repeated measure-
ments, there is also the possibility to obtain a magnitude of the strength
of the ‘within-subject effect’ (i.e. time). This magnitude is reflected in a
measure called ‘eta squared), which can be seen as an indicator for the
explained variance in the outcome variable Y due to a particular effect.
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Eta squared is calculated as the ratio between the sum of squares of the
particular effect and the total sum of squares. From the output it can be
seen that eta squared is 0.406 (i.e. 89.99/(131.40 + 89.99)), which indicates
that 41% of the variance in outcome variable Y is explained by the time
effect.

The last part of the output (tests of within-subjects contrasts) provides an
answer to the second question (‘what is the shape of the relationship with
time?’). The first line (linear) indicates the test for a linear development. The
F-value (obtained from the mean square (40.322) divided by the error mean
square (0.319)) is very high (126.240), and is highly significant (0.000). This
result indicates that there is a significant linear development over time. The
following lines show the same values belonging to the other functions with
time. The second line shows the second-order function (i.e. quadratic), the
third line shows the third-order function (i.e. cubic), and so on. All F-values
were significant, indicating that all other developments over time (second-
order, third-order, etc.) are statistically significant. The magnitudes of the
F-values, and the values of eta squared indicate further that the best way to
describe the development over time is a quadratic function, but the more
simple linear function with time is also quite good. Again, from the results
there is no indication of whether there is an increase or a decrease over time.
In fact, the results of the MANOVA for repeated measurements can only be
interpreted correctly if a graphical representation of the change over time is
made. Output 3.8 shows such a graphical representation. The figure shows
that the significant development over time, which was found with MANOVA
for repeated measurements, is first characterized by a small decrease, which
is followed by an increase over time.

To put the results of the MANOVA for repeated measurements in a some-
what broader perspective, the results of a ‘naive’ analysis are shown in
Output 3.9, naive in the sense that the dependency of the repeated obser-
vations within one subject is ignored. Such a naive analysis is an analysis
of variance (ANOVA), in which the mean values of outcome variable Y are
compared among all six measurements, i.e. six groups, each representing
one time-point. For only two measurements, this comparison would be the
same as the comparison between an independent sample t-test (the naive
approach) and a paired t-test (the adjusted approach).
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Output 3.8. Results of the MANOVA for repeated measurements; graphical
representation of a ‘one-within’ design

Estimated marginal means
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time

From Output 3.9 it can be seen that the F-statistic for the time effect
(the effect in which we are interested) is 32.199, which is highly significant
(0.000). This result indicates that at least one of the mean values of outcome
variable Y at a certain time-point is significantly different from the mean
value of outcome variable Y at one of the other time-points. However, as
mentioned before, this approach ignores the fact that a longitudinal study is
performed, i.e. that the same subjects are measured on several occasions. The
most important difference between MANOVA for repeated measurements
and the naive ANOVA is that the ‘error sum of squares’ in the ANOVA is
much higher than the ‘error sum of squares’ in the MANOVA for repeated
measurements. In the ANOVA this ‘error sum of squares’ (indicated by the
residual mean square) is 0.559 (see Output 3.9), while for the MANOVA
for repeated measurements this ‘error sum of squares’ (indicated by Error
(TIME) Sphericity Assumed) was more than three times lower, i.e. 0.180 (see
Output 3.7).



37

The “univariate’ or the ‘multivariate’ approach?

Output 3.9. Results of a (naive) analysis of variance (ANOVA), ignoring the
dependency of observations

Analysis of Variance

Y OUTCOME VARIABLE Y AT T1 TO T6
BY TIME
Sum of Mean Signif
Source of Variation Squares DF Square F of F
Main Effects 89.987 5 17.997 32.199 0.000
TIME 89.987 5 17.997 32.199 0.000
Explained 89.987 5 17.997 32.199 0.000
Residual 489.630 876 0.559
Total 579.617 881 0.658

3.4 The ‘univariate’ or the ‘multivariate’ approach?

Within MANOVA for repeated measurements a distinction can be made
between the ‘multivariate’ approach (the multivariate extension of a paired
t-test) and the ‘univariate’ approach (an extension of ANOVA). The problem
is that the two approaches do not produce the same results. So the question
is: Which approach should be used?

One of the differences between the two approaches is the assumption of
sphericity. For the ‘multivariate’ approach this assumption is not necessary,
while for the ‘univariate’ approach it is an important assumption. The re-
striction of the assumption of sphericity (i.e. equal correlations and equal
variances over time) leads to an increase in degrees of freedom, i.e. an in-
crease in power for the ‘univariate’ approach. This increase in power becomes
more important when the sample size becomes smaller. The ‘multivariate’
approach was developed later than the ‘univariate’ approach, especially for
situations when the assumption of sphericity does not hold. So, one could
argue that when the assumption of sphericity is violated, the ‘multivariate’
approach should be used. However, in the ‘univariate’ approach, adjust-
ments can be made when the assumption of sphericity is not met. So, in
principle, both approaches can deal with a situation in which the assump-
tion of sphericity does nothold. Itis sometimes argued that when the number
of subjects N is less than the number of (repeated) measurements plus 10,
the ‘multivariate’ approach should not be used. In every other situation,
however, it is recommended that the results of both the ‘multivariate’ and
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the ‘univariate’ approach are used to obtain the most ‘valid’ answer to the
research question addressed. Only when both approaches produce the same
results, it is fairly certain that there is either a significant or a non-significant
change over time. When both approaches produce different results, the con-
clusions must be drawn with many restrictions and considerable caution. In
such a situation, it is highly recommended not to use the approach with the
lowest p-value!

3.5 Comparing groups

In the first sections of this chapter longitudinal studies were discussed in
which one continuous outcome variable is repeatedly measured over time
(i.e. the ‘one-within’ design). In this section the research situation will be dis-
cussed in which the development of a certain continuous outcome variable
Y is compared between different groups. This design is known as the ‘one-
within, one-between’ design. Time is the within-subject factor and the group
variable is the between-subjects factor (Figure 3.4). This group indicator can
be either dichotomous or categorical. The question to be addressed is: ‘Is
there a difference in change over time for outcome variable Y between two
or more groups?’ This question can also be answered with MANOVA for
repeated measurements. The same assumptions as have been mentioned

arbitrary value

time

Figure 3.4. A longitudinal ‘one-within, one-between’ design with six repeated measurements
measured in two groups (= group 1, e— — — group 2).
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earlier (Section 3.3) apply for this design, but it is also assumed that the
covariance matrices of the different groups that are compared to each other
are homogeneous. This assumption is comparable with the assumption of
equal variances in two groups that are cross-sectionally compared with each
other using the independent sample t-test. Although this is an important
assumption, in reasonably large samples a violation of this assumption is
generally not problematic.

From a ‘one-within, one-between’ design the following ‘effects’ can be
obtained: (1) an overall time effect, i.e. ‘is there a change over time in out-
come variable Y for the total population?’, (2) a general group effect, i.e. is
there on average a difference in outcome variable Y between the compared
groups?, (3) a group by time interaction effect, i.e. ‘is the change over time
in outcome variable Y different for the compared groups?’ The within-subject
effects can be calculated in two ways: the ‘multivariate’ approach, which is
based on the multivariate analysis of the differences between subsequent
points of measurements, and the ‘univariate’ approach, which is based on the
comparison of several sums of squares (see Section 3.5.1). In epidemiological
longitudinal studies the group by time interaction effect is probably the most
interesting, because it gives an answer to the question of whether there is a
difference in change over time between groups.

With respect to the shape of the relationship with time (linear, quadratic,
etc.) specific questions can also be answered for the ‘one-within, one-between’
design, such as ‘is there a difference in the linear relationship with time be-
tween the groups?;, ‘is there a difference in the quadratic relationship with
time?, etc. However, especially for interaction terms, the answers to those
questions can be quite complicated, i.e. the results of the MANOVA for
repeated measurements can be very difficult to interpret.

It should be noted that an important limitation of MANOVA for re-
peated measurements is that the between-subjects factor can only be a time-
independent dichotomous or categorical variable, such as treatment group,
gender, etc.

‘univariate’ approach: a numerical example
The simple longitudinal dataset used to illustrate the ‘univariate’ approach in
a ‘one-within’ design will also be used to illustrate the ‘univariate’ approach
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Table 3.7. Hypothetical longitudinal dataset with four measurements
in six subjects divided into two groups

i Group Yu Ytz Yi3 Yia Mean
1 1 31 29 15 26 25.25
2 1 24 28 20 32 26.00
3 1 14 20 28 30 23.00
Mean 23.00 25.67 21.00 29.33 24.75
4 2 38 34 30 34 34.00
5 2 25 29 25 29 27.00
6 2 30 28 16 34 27.00
Mean 31.00 30.33 23.67 32.33 29.33

in a ‘one-within, one-between’ design. Therefore, the dataset used in the
earlier example, and presented in Table 3.4, is extended to include a group
indicator. The ‘new’ dataset is presented in Table 3.7.

To estimate the different ‘effects’, it should first be noted that part of the
overall ‘error sum of squares’ is related to the differences between the two
groups. To calculate this part, the sum of squares for individuals (SS;) must
be calculated for each of the groups (see Equation (3.5)). For group 1, SS; =
3[(25.25 — 24.75)* + (26 — 24.75)* + (23 — 24.75)?] = 19.5, and for
group 2, SS; = 3[(34 — 29.33)? + (27 — 29.33)% + (27 — 29.33)?] = 130.7.

These two parts can be added together to give an overall ‘error sum
of squares’ of 150.2. If the group indication is ignored, the overall ‘error
sum of squares’ is 276.2 (see Section 3.3.1). This means that the between-
subjects sum of squares caused by group differences is 126.0 (i.e. 276.2 —
150.2). The next step is to calculate the SS,, and the SS;, for each group.
This can be done in the same way as has been described for the whole
population (see Equations (3.3) and (3.4)). The results are summarized in
Table 3.8.

The two within-subject ‘error sums of squares’ can be added together to
form the overall within-subject error sum of squares (corrected for group).
This total within-subject error sum of squares is 373.17. Without taking the
group differentiation into account, a within-subject error sum of squares
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Table 3.8. Summary of the different sums of squares calculated
for each group separately

Group 1 Group 2

SSp 116.9 134.7
SSw 299.3 224.0
SS; 19.5 130.7
Within-subject error  299.3 — 19.5 =279.83  224.0 — 130.7 = 93.33
sum of squares
of 399.96 was found. The difference between the two is the sum of squares
belonging to the interaction between the within-subject factor ‘time’ and
the between-subject factor ‘group’. This sum of squares is 26.79. Output 3.10
shows the computerized results of the MANOVA for repeated measurements
for this numerical example.
Output 3.10. Results of MANOVA for repeated measurements for a simple
longitudinal dataset with a group indicator
Within-subjects effects
Source Sum of squares df Mean square F Sig
TIME 224.792 3 74.931 2.810 0.075
TIME x GROUP  26.792 3 8.931 0.287 0.834
Error (TIME) 373.167 12 31.097
Between-subjects effects
Source Sum of squares df Mean square F Sig
Intercept 17550.042 1 17550.042 317.696 0.000
GROUP 126.042 1 126.042 3.357  0.141
Error 150.167 4 37.542

3.5.2 Example

In the example dataset, X4 is a dichotomous time-independent predictor
variable (i.e. gender), so this variable will be used as a between-subjects factor
in this example. The results of the MANOVA for repeated measurements from
a ‘one-within, one-between’ design are shown in Output 3.11.
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Output 3.11. Results of MANOVA for repeated measurements; a ‘one-within,
one-between’ design

Tests of between-subjects effects

Measure: MEASURE_1

Transformed Variable: Average

Type III Sum Partial Eta
Source of Squares df Mean Square F Sig Squared
Intercept 17715.454 1 17715.454 7486.233 0.000 0.981
X4 15.103 1 15.103 6.382 0.013 0.042
Error 343.129 145 2.366

Multivariate tests?

Partial Eta

Effect Value F Hypothesis df Error df Sig Squared

TIME Pillai's Trace 0.669 56.881° 5.000 141.000 0.000 0.669
Wilks' Lambda 0.331 56.881> 5.000 141.000 0.000 0.669
Hotelling's Trace 2.017 56.881° 5.000 141.000 0.000 0.669
Roy's Largest Root 2.017 56.881° 5.000 141.000 0.000 0.669

TIME * X4 Pillai's Trace 0.242 8.980° 5.000 141.000 0.000 0.242
Wilks' Lambda 0.758 8.980° 5.000 141.000 0.000 0.242
Hotelling's Trace 0.318 8.980° 5.000 141.000 0.000 0.242
Roy's Largest Root 0.318 8.980° 5.000 141.000 0.000 0.242

“Design: Intercept + X4

Within subjects design: TIME

Exact statistic.

Mauchly’s test of sphericity

Measure: MEASURE 1

Epsilon®

Within

Subjects ApPpProx. Greenhouse

Effect Mauchly's W Chi-Square df Sig —Geisser Huynh—Feldt Lower-bound

TIME 0.433 119.736 14 0.000 0.722 0.748 0.200

Tests the null hypothesis that the error covariance matrix of the orthonormalized
transformed dependent variables is proportional to an identity matrix.

“Design: Intercept+X4

Within subjects design: TIME

"May be used to adjust the degrees of freedom for the averaged tests of
significance. Corrected tests are displayed in the tests of within-subjects
effects table.
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Tests of within-subjects effects

Measure: MEASURE_1
Type III
Sum of Mean Partial Eta
Source Squares df Square F Sig Squared
TIME Sphericity Assumed 89.546 5 17.909 104.344 0.000 0.418
Greenhouse—Geisser 89.546 3.612 24.793 104.344 0.000 0.418
Huynh—Feldt 89.546 3.741 23.937 104.344 0.000 0.418
Lower-bound 89.546 1.000 89.546 104.344 0.000 0.418
TIME * X4 Sphericity Assumed 6.962 5 1.392 8.113 0.000 0.053
Greenhouse—Geisser 6.962 3.612 1.928 8.113 0.000 0.053
Huynh—Feldt 6.962 3.741 1.861 8.113 0.000 0.053
Lower-bound 6.962 1.000 6.962 8.113 0.005 0.053
Error (TIME) Sphericity Assumed 124.436 725 0.172
Greenhouse—Geisser 124.436 523.707 0.238
Huynh—Feldt 124 .436 542.443 0.229
Lower-bound 124.436 145.000 0.858
Tests of within-subjects contrasts
Measure: MEASURE_1
Type III Sum Partial Eta
Source TIME of Squares df Mean Square F Sig Squared
TIME Linear 38.668 1 38.668 131.084 0.000 0.475
Quadratic 45.502 1 45.502 213.307 0.000 0.595
Cubic 1.602 1 1.602 11.838 0.001 0.075
Order 4 1.562 1 1.562 12.516 0.001 0.079
Order 5 2.212 1 2.212 24.645 0.000 0.145
TIME *x X4 Linear 3.872 1 3.872 13.127 0.000 0.083
Quadratic 2.856 1 2.856 13.388 0.000 0.085
Cubic 0.154 1 0.154 1.142 0.287 0.008
Order 4 7.533 x 1073 1 7.533 x 1073 0.060 0.806 0.000
Order 5 7.216 x 1072 1 7.216 x 1072 0.804 0.371 0.006
Error (TIME) Linear 42.773 145 0.295
Quadratic 30.931 145 0.213
Cubic 19.616 145 0.135
Order 4 18.100 145 0.125
Order 5 13.016 145 8.976 x 1072
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Part of the Output 3.11 is comparable to the output of the ‘one-within’
design, shown in Output 3.7. The major difference is found in the first part of
the output, in which the result of the ‘tests of between-subjects effects’is given.
The F-value belonging to this test is 6.382 and the significance level is 0.013,
which indicates that there is an overall (i.e. averaged over time) difference
between the two groups indicated by X4. The other difference between the
two outputs is the addition of a time by X, (TIME* X4) interaction term. This
interaction is interesting, because it answers the question of whether thereisa
difference in development over time between the two groups indicated by X,
(i.e. the difference in developments between males and females). The answer
to that question can either be obtained with the ‘multivariate’ approach
(Pillai, Wilks, Hotelling, and Roy) or with the ‘univariate’ approach. For the
‘multivariate’ approach (multivariate tests), firstly the overall time effect is
given and secondly the time by X, interaction. For the ‘univariate’ approach,
again the assumption of sphericity has to hold and from the output it can
be seen that this is not the case (Greenhouse—Geisser € = 0.722, and the
significance of the sphericity test is 0.000). For this reason, in the univariate
approach it is recommended that the Greenhouse—Geisser adjustment is
used. From the output of the univariate analysis, firstly the overall time effect
(F = 104.344, significance 0.000) and secondly the time by X, interaction
effect (F = 8.113, significance 0.000) can be obtained. This result indicates
that there is a significant difference in development over time between the
two groups indicated by X,.

From the next part of Output 3.11 (tests of within-subjects contrasts) it
can be seen that this difference is significant for both the linear development
over time and the quadratic development over time.

For all three effects, the explained variances are also given as an indicator
of the magnitude of the effect. In this example it can be seen that 42% of
the variance in outcome variable Y is explained by the ‘time effect, that 5%
is explained by the ‘time by X, interaction), and that 4% of the variance in
outcome variable Y is explained by the ‘overall group effect. Care must be
taken in the interpretation of these explained variances, because they cannot
be interpreted together in a straightforward way. The explained variances
for the time effect and the time—group interaction effect are only related to
the within-subject ‘error sum of squares, and not to the total ‘error sum of
squares.
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As in the case for the ‘one-within’ design, the results of the MANOVA for
repeated measurements for a ‘one-within, one-between’ design can only be
interpreted correctly when a graphical representation is added to the results
(see Output 3.12).

Output 3.12. Results of MANOVA for repeated measurements; graphical
representation of a ‘one-within, one-between’ design (X,, —— males, — - -
females)

Estimated marginal means

time

3.6 Comments

One of the problems with MANOVA for repeated measurements is that the
time periods under consideration are weighted equally. A non-significant
change over a short time period can be relatively greater than a significant
change over a long time period. So, when the time periods are unequally
spaced, the results of MANOVA for repeated measurements cannot be in-
terpreted in a straightforward way. The length of the different time intervals
must be taken into account.
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Another major problem with MANOVA for repeated measurements is that
it only takes into account the subjects with complete data, i.e. the subjects
who are measured at all time-points. When a subject has no data available
for a certain time-point, all other data for that subject are deleted from the
analysis. In Chapter 10, the problems and consequences of missing data
in longitudinal studies and in the results obtained from a MANOVA for
repeated measurements analysis will be discussed. MANOVA for repeated
measurements can also be used for more complex study designs, i.e. with
more ‘within-subject’ and/or more ‘between-subjects’ factors. Because the
ideas and the potential questions to be answered are the same as in the
relatively simple designs discussed before, the more complex designs will
not be discussed further. It should be kept in mind that the more groups
that are compared to each other (given a certain number of subjects), or the
more factors that are included in the design, the less power there will be to
detect significant effects. This is important, because MANOVA for repeated
measurements is basically a testing technique, so p-values are used to evaluate
longitudinal relationships. In principle, no interesting effect estimations are
provided by the procedure of the MANOVA for repeated measurements. The
explained variances can be calculated, but the importance of this indicator
is rather limited.

3.7 Post-hoc procedures

With MANOVA for repeated measurements an ‘overall” time effect and an
‘overall” group effect can be obtained. As in cross-sectional ANOVA, post-
hoc procedures can be performed to investigate further the observed ‘overall’
relationships. In longitudinal analysis there are two types of these post-hoc
procedures. (1) When there are more than two repeated measurements, it
can be determined in which part of the longitudinal time period the observed
‘effects’ occur. This can be done by performing MANOVA for repeated meas-
urements for a specific (shorter) time period. (2) When there are more than
two groups for which the longitudinal relationship is analysed, a statistic-
ally significant ‘between-subjects effect’ indicates that there is a difference
between at least two of the compared groups. Further analysis can determine
between which groups the differences occur. This can be carried out by
applying the post-hoc procedures also used in the cross-sectional ANOVA
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(e.g. Tukey procedure, Bonferroni procedure and Scheffe procedure). Each
technique has is own particularities, but in essence multiple comparisons
are made between all groups; each group is pairwise compared to the other
groups.

3.7.1 Example
Output 3.13 shows a typical output of a post-hoc procedure following
MANOVA for repeated measurements comparing three groups (the data are
derived from a hypothetical dataset which will not be discussed any further).

Output 3.13. Results of three post-hoc procedures in MANOVA for repeated
measurements

Between-subjects effects

Source Sum of squares df Mean square F Sig
Intercept 17845.743 1 17845.743 8091.311 0.000
GROUP 40.364 2 20.317 9.221 0.000
Error 317.598 144 2.206

Post-hoc tests

Groupl Group2 Mean difference (1 — 2) Std error Sig

Tukey 1 2 -8.361 x 1072 0.1225 0.774
3 -0.4913 0.1225 0.000

2 1 -8.361 x 1072 0.1225 0.774

3 -0.4077 0.1225 0.003

3 1 0.4913 0.1225 0.000

2 0.4077 0.1225 0.003

Scheffe 1 2 -8.361 x 1072 0.1225 0.793
3 -0.4913 0.1225 0.000

2 1 -8.361 x 107 0.1225 0.793

3 -0.4077 0.1225 0.005

3 1 0.4913 0.1225 0.000

2 0.4077 0.1225 0.005

Bonferroni 1 2 -8.361 x 1072 0.1225 1.00
3 -0.4913 0.1225 0.000

2 1 -8.361 x 1072 0.1225 1.00

3 -0.4077 0.1225 0.003

3 1 0.4913 0.1225 0.000

2 0.4077 0.1225 0.003
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The structure of the first part of the output is similar to the outputs
discussed before. It shows the overall between-subjects group effect. The
p-value belonging to this group effect is highly significant. The interpreta-
tion of this result is that there is at least one significant difference between two
of the three groups, but this overall result gives no information about which
groups actually differ from each other. To obtain an answer to that question,
a post-hoc procedure can be carried out. In the output, the results of the
three most commonly used post-hoc procedures are given. The first column
of the output gives the name of the post-hoc procedure (Tukey, Scheffe and
Bonferroni). The second and third columns show the pairwise comparisons
that are made, and the fourth and fifth columns give the overall mean differ-
ence between the compared groups and the standard error of that difference.
The last column gives the p-value of the pairwise comparison. One must re-
alize that these post-hoc procedures deal with the overall between-subjects
group effect, i.e. the difference between the average value over the different
time-points. To obtain an answer to the question in which part of the lon-
gitudinal period the observed relationships occurred, a MANOVA can be
performed for specific time periods.

Ascanbe seen from the output, there are only marginal differences between
the three post-hoc procedures (in most research situations this will be the
case). It can be seen that groups 1 and 2 do not differ from each other, but
that the average value of group 3 is totally different from that of the other
two groups.

3.8 Different contrasts

Inan earlier part of this chapter, attention was paid to answering the question:
‘What is the shape of the relationship between outcome variable Y and
time?” In the example it was mentioned that the answer to that question
can be found in the output section: test of within-subject contrasts. In the
example a so-called ‘polynomial’ contrast was used in order to investigate
whether one is dealing with a linear relationship with time, a quadratic
relationship with time, and so on. In longitudinal research this is by far
the most important contrast, but there are many other possible contrasts
(depending on the software package used). With a ‘simple’ contrast, for
instance, the value at each measurement is related to the first measurement.
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With a ‘difference’ contrast, the value of each measurement is compared to
the average of all previous measurements. A ‘Helmert’ contrast is comparable
to the ‘difference’ contrast, however, the value at a particular measurement is
compared to the average of all subsequent measurements. With the ‘repeated’
contrast, the value of each measurement is compared to the value of the first
subsequent measurement. In Section 3.3 it was mentioned that the testing
of a ‘polynomial’ contrast was based on transformed variables. In fact, the
testing of all contrasts is based on transformed variables. However, for each
contrast, different transformation coefficients are used.

3.8.1 Example

Outputs 3.14a to 3.14d show the results of MANOVA for repeated measure-
ments with different contrasts performed on the example dataset. The output
obtained from the analysis with a polynomial contrast was already shown in
Section 3.4 (Output 3.7).

With the ‘simple’ contrast, each measurement is compared to the first meas-
urement. From Output 3.14a it can be seen that all follow-up measurements
differ significantly from the first measurement. From the output, however, it
cannot be seen whether the value at t = 2 is higher than the value att = 1.
It can only be concluded that there is a significant difference.

With the ‘difference’ contrast, the value at each measurement is compared
to the average value of all previous measurements. From Output 3.14b it
can be seen that there is a significant difference between the value at each
measurement and the average value of all previous measurements.

With the ‘Helmert’ contrast (Output 3.14c¢), the same procedure is carried
out as with the ‘difference’ contrast, only the other way around. The value at
each measurement is compared to the average value of all subsequent meas-
urements. All these differences are also highly significant. Only if we compare
the first measurement with the average value of the other five measurements,
is the p-value of borderline significance (0.047).

With the ‘repeated’ contrast, the value of each measurement is compared
to the value of the first subsequent measurement. From Output 3.14d it can
be seen that the value of outcome variable Y at t = 2 is not significantly
different to the value of outcome variable Y att =3 (p = 0.136). All the
other differences investigated were statistically significant. Again, it must be
stressed that there is no information about whether the value at a particular
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time-pointis higher orlower than the value at the first subsequent time-point.
Like all other results obtained from MANOVA for repeated measurements,
the results of the analysis with different contrasts can only be interpreted
correctly if they are combined with a graphical representation of the devel-
opment of outcome variable Y.

Output 3.14a. Results of MANOVA for repeated measurements with a ‘simple’
contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig
Level2 vs Levell 1.830 1 1.830 8.345 0.004
Level3 vs Levell 4.184 1 4.184 14.792 0.000
Leveld vs Levell 10.031 1 10.031 32.096 0.000
Level5 vs Levell 8.139 1 8.139 20.629 0.000
Level6 vs Levell 69.353 1 69.353 120.144 0.000
Error

Level2 vs Levell 32.010 146 0.219

Level3 vs Levell 41.296 146 0.283

Leveld vs Levell 45.629 146 0.313

Level5 vs Levell 57.606 146 0.395

Level6 vs Levell 84.279 146 0.577

Output 3.14b. Results of MANOVA for repeated measurements with a
'difference’ contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig
Levell vs Level2 1.830 1 1.830 8.345 0.004
Level2 vs Previous 1.875 1 1.875 9.679 0.002
Level3 vs Previous 4.139 1 4.139 28.639 0.000
Leveld vs Previous 20.198 1 20.198 79.380 0.000
Level5 vs Previous 82.271 1 82.271 196.280 0.000
Error

Levell vs Level2 32.010 146 0.219

Level2 vs Previous 28.260 146 0.194

Level3 vs Previous 21.101 146 0.145

Leveld vs Previous 37.150 146 0.254

Level5 vs Previous 61.196 146 0.419
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Output 3.14c. Results of MANOVA for repeated measurements with a
"Helmert’ contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig
Levell vs Later 0.852 1 0.852 4.005 0.047
Level2 vs Later 8.092 1 8.092 41.189 0.000
Level3 vs Later 22.247 1 22.247 113.533 0.000
Leveld4 vs Later 76.695 1 76.695 277.405 0.000
Level5 vs Level6 29.975 1 29.975 63.983 0.000
Error

Levell vs Later 31.061 146 0.213

Level2 vs Later 28.684 146 0.196

Level3 vs Later 28.609 146 0.196

Leveld4 vs Later 40.365 146 0.276

Level5 vs Level6 68.399 146 0.468

Output 3.14d. Results of MANOVA for repeated measurements with a
‘repeated’ contrast

Within-subject Contrasts

Source Sum of squares df Mean square F Sig
Levell vs Level2 1.830 1 1.830 8.345 0.004
Level2 vs Level3 0.480 1 0.480 2.242 0.136
Levell3 vs Leveld 1.258 1 1.258 8.282 0.005
Leveld vs Level5 36.242 1 36.242 125.877 0.000
Level5 vs Level6 29.975 1 29.975 63.983 0.000
Error

Levell vs Level2 32.010 146 0.219

Level2 vs Level3 31.260 146 0.214

Levell3 vs Leveld 22.182 146 0.152

Leveld vs Level5 42.036 146 0.288

Level5 vs Level6 68.399 146 0.468

When there are more than two groups to be compared with MANOVA

for repeated measurements, contrasts can also be used to perform post-
hoc procedures for the ‘overall’ group effect. With the traditional post-hoc

procedures discussed in Section 3.7 all groups are pairwise compared, while

with contrasts this is not the case. With a ‘simple’ contrast for instance, the

groups are compared to a certain reference category, and with a ‘repeated’
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contrast each group is compared to the next group (dependent on the coding
of the group variable). The advantage of contrasts in performing post-hoc
procedures is when a correction for certain covariates is applied. In that
situation, the traditional post-hoc procedures cannot be performed, while
with contrasts, the adjusted difference between groups can be obtained.
Again, it is important to realize that the post-hoc procedures performed with
different contrasts are only suitable (as the traditional post-hoc procedures)
for analysing the ‘between-subjects’ effect.

3.9 Non-parametric equivalent of MANOVA for repeated
measurements

When the assumptions of MANOVA for repeated measurements are viol-
ated, an alternative non-parametric approach can be applied. This non-
parametric equivalent of MANOVA for repeated measurements is called
the Friedman test and can only be used in a ‘one-within’ design. Like any
other non-parametric test, the Friedman test does not make any assumptions
about the distribution of the outcome variable under study. To perform the
Friedman test, for each subject the outcome variable at T time-points is
ranked from 1 to T. The Friedman test statistic is based on these rankings.
In fact, the mean rankings (averaged over all subjects) at each time-point are
compared to each other. The idea behind the Friedman test is that the ob-
served rankings are compared to the expected rankings, assuming there is no
change over time. The Friedman test statistic can be calculated according to
Equation (3.6):

.
12" R}

_ =
H= NT T 3N(T +1) (3.6)

where H is the Friedman test statistic, Ry is the sum of the ranks at time-
point t, N is the number of subjects, and T is the number of repeated
measurements.

To illustrate this non-parametric test, consider again the hypothetical
dataset presented earlier in Table 3.4. In Table 3.9 the ranks of this dataset
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Table 3.9. Absolute values and ranks (in parentheses) of the
hypothetical dataset presented in Table 3.4

i Yi; (rank) Y¢»(rank) Y3 (rank) Yi4(rank)
1 31 (4) 29 (3) 15 (1) 26 (2)

2 24 (2) 28 (3) 20 (1) 32 (4)

3 14 (1) 20 (2) 28 (3) 30 (4)

4 38 (4) 34 (2.5) 30 (1) 34 (2.5)
5 25 (1.5) 29 (3.5) 25 (1.5) 29 (3.5)
6 30 (3) 28 (2) 16 (1) 34 (4)
Total rank 15.5 16 8.5 20

are presented. Applied to the (simple) longitudinal dataset the Friedman test
statistic (H) is equal to:

12(15.5% + 162 + 8.5 + 20?)
6 x4x5

—3x6x5=6.85

This value follows a x? distribution with T — 1 degrees of freedom. The
corresponding p-value is 0.077. When this p-value is compared to the value
obtained from a MANOVA for repeated measurements (see Qutput 3.4) it
can be seen that they are almost the same. That the p-value from the non-
parametric test is slightly higher than the p-value from the parametric test
has to do with the fact that non-parametric tests are in general less powerful
than the parametric equivalents.

3.9.1 Example

Because the number of subjects in the example dataset is reasonably high,
in practice the Friedman test will not be used in this situation. However,
for educational purposes the non-parametric Friedman test will be used to
answer the question of whether there is a development over time in outcome
variable Y. Output 3.15 shows the results of this analysis.

From the output it can be seen that there is a significant difference be-
tween the measurements at different time-points. The x 2 statisticis 244.1535,
and with five degrees of freedom (the number of measurements minus
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Output 3.15. Output of the non-parametric Friedman test

Friedman Two-way ANOVA
Mean Rank Variable

3.49 YT1 OUTCOME VARIABLE Y AT T1
2.93 YT2 OUTCOME VARIABLE Y AT T2
2.79 YT3 OUTCOME VARIABLE Y AT T3
2.32 YT4 OUTCOME VARIABLE Y AT T4
4.23 YT5 OUTCOME VARIABLE Y AT T5
5.24 YT6 OUTCOME VARIABLE Y AT T6
Cases Chi-Square DF Significance

147 244.1535 5 0.0000

one) this value is highly significant, i.e. a similar result to that found with the
MANOVA for repeated measurements. The Friedman test statistic gives no
direct information about the direction of the development, although from
the mean rankings it can be seen that a decrease from the second to the fourth
measurement is followed by an increase at the fifth and sixth measurements.
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With a paired t-testand MANOVA for repeated measurements it is possible to
investigate changes in one continuous variable over time and to compare the
development of a continuous variable over time between different groups.
These methods, however, are not suitable for analysis of the relationship
between the developments of two continuous variables or for analysis of the
relationship between a continuous outcome variable and several predictor
variables, which can be either continuous, dichotomous or categorical. Before
the development of ‘sophisticated’ statistical techniques such as generalized
estimating equations (GEE) and random coefficient analysis, ‘traditional’
methods were used to analyse longitudinal data. The general idea of these
‘traditional’ methods was to reduce the statistical longitudinal problem into
a cross-sectional problem. Even nowadays these (limited) approaches are
often used in the analysis of longitudinal data.

4.2 ‘Traditional’ methods

The greatest advantage of the ‘traditional’ methods is that simple cross-
sectional statistical techniques can be used to analyse the longitudinal data.
The most commonly used technique for reducing the longitudinal problem
to a cross-sectional problem is analysis of the relationships between changes
in different parameters between two points in time (Figure 4.1). Because of
its importance and its widespread use, a detailed discussion of the analysis
of changes is given in Chapter 8.

Another traditional method with which to analyse the longitudinal rela-
tionship between several variables is the use of a single measurement at the
end of the longitudinal period as outcome variable. This outcome variable is
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Figure 4.1.

Figure 4.2.

Relationships with other variables

Predictor variable

Outcome variable

Changes in outcome variable Y between two subsequent measurements are
related to changes in one or more predictor variable(s) X over the same time
period.

Predictor variable
[

a2 B W (sl e

Outcome variable

‘Long-term exposure’ to one or more predictor variable(s) X related to a single
measurement of outcome variable Y.

then related to a so-called ‘long-term exposure’ to certain predictor variables,
measured along the total longitudinal period (Figure 4.2).

It is obvious that a limitation of both methods is that if there are more
than two measurements, not all available longitudinal data are used in the
analysis. Another cross-sectional possibility for analysing the longitudinal
relationship between an outcome variable Y and (several) predictor variables
X, using all the data, is to use individual regression lines with time. The
first step in this procedure is to calculate the linear regression between the
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outcome variable Y and time for each subject. The regression coefficient
with time (which is referred to as the slope) can be seen as an indicator for
the change over the whole measurement period in the outcome variable Y.
This regression coefficient with time is then used as the outcome variable in
a cross-sectional regression analysis, in order to investigate the longitudinal
relationship with other variables. The same procedure can be followed for
the time-dependent predictor variables in order to analyse the relationship
between the change in outcome variable Y and the change in the time-
dependent predictor variables. However, the baseline value of the predictor
variables can also be used in the final cross-sectional regression analysis. In
the latter case it is obvious that a different research question is answered.
The greatest disadvantage of this technique is the assumption of a linear
relationship between the outcome variable Y and time, although it is possible
to model a different individual regression function with time. Furthermore,
itis questionable how well the individual regression line (or function), which
is usually based on a few data points, fits the observed data.

4.3 Example

To illustrate the first ‘cross-sectional’ technique that can be used to analyse
the longitudinal relationship between a continuous outcome variable Y and
several predictor variables X (Figure 4.1), the change between Yi; and Yie is
first calculated. In the next step the changes in the time-dependent predictor
variables X, and X3 must be calculated. For X3, which is a dichotomous
predictor variable, this is rather difficult, because the interpretation of the
changes is not straightforward. In Chapter 8 this problem will be discussed
further. In this example, the subjects were divided (according to X3) into
subjects who remained in the lowest category or ‘decreased’ between t =1
and t = 6 (i.e. the non-smokers and the subjects who quitted smoking), and
subjects who remained in the highest category or ‘increased’ between t = 1
and t = 6 (i.e. the ever-smokers and the subjects who started to smoke).
Because the longitudinal problem is reduced into a cross-sectional problem,
the relationships can be analysed with simple linear regression analysis. The
result of the analysis is shown in Output 4.1.

Because the longitudinal problem is reduced to a cross-sectional problem,
and the data are analysed with simple cross-sectional regression analysis,
the regression coefficient can be interpreted in a straightforward way. For
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Output 4.1. Results of a linear regression analysis relating changes in
predictor variables to changes in outcome variable Y between t=1 and t=6

Standardized
B Std. error coefficient t Sig
Constant -0.140 0.851 -0.165 0.870
X1 0.127 0.348 0.037 364 0.716
DELX2 0.046 0.044 0.087 1.055 0.293
DELX3 -0.051 0.141 -0.030 -0.364 0.716
X4 .359 0.153 0.236 341 0.021

Dependent variable: DELY

instance, the regression coefficient for X, indicates that the difference be-
tween Y att = 1and Y att = 6 is 0.359 higher for the group indicated by
X4 = 2 (i.e. females) compared to the group indicated by X4 = 1 (i.e. males).

The second cross-sectional technique is slightly different. In this method
‘long-term exposure’ to the predictor variables X is related to the outcome
variable Y att = 6 (Figure 4.2). For the time-dependent predictor variable
X,, the average of the six measurements was used as indicator for ‘long-
term exposure’. For the dichotomous predictor variable X3, the long-term
exposure’ is coded as 0 when subjects report 0 (i.e. non-smoking) at all
measurements, and coded 1 when subjects report 1 (i.e. smoking) at least
at one of the measurements. The result of the linear regression analysis is
shown in Output 4.2.

Output 4.2. Results of a linear regression analysis relating ‘long-term
exposure’ to predictor variables to the outcome variable Y at t=6

Standardized
B Std. error coefficient t Sig
Constant 2.380 1.027 2.317 0.022
X1 0.719 0.407 171 1.768 0.079
AveragX2 0.373 0.068 0.518 5.495 0.000
AveragX3 0.085 0.141 046 0.605 0.546
X4 -0.073 0.182 -0.040 -0.405 0.686

Dependent variable: OUTCOME VARIABLE Y AT T6
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The output shows for instance a highly significant relationship between
the average value of X, (calculated over all six repeated measurements) and
the outcome variable Y att = 6; a relationship which can be interpreted in
such a way that a 1 point higher ‘long-term exposure’ to Xj is associated with
a 0.373 point higher value for Y att = 6.

The last mentioned cross-sectional method that can be used to analyse
a longitudinal relationship is based on the individual linear regression lines
between outcome variable Y and time. The individual regression coefficients
with time (i.e. the slopes) are then used as outcome variable in a linear
regression analysis relating the development of outcome variable Y to several
predictor variables. It has already been mentioned that the predictor variables
can be modelled in many different ways, depending on the research question
at issue. In this example the relationship between the values of all predictor
variablesatt = 1and the slopes of the individual regression lines of outcome
variable Y was investigated, in order to obtain an answer to the question of
whether or not the development in outcome variable Y can be predicted by
predictor variables measured at baseline. The result of this analysis is shown
in Output 4.3.

Output 4.3. Results of a linear regression analysis relating baseline values
of the predictor variables to the slopes of the individual regression lines
between outcome variable Y and time

Standardized
B Std. error coefficient t Sig
Constant -0.159 0.158 -1.002 0.318
X1 0.051 0.063 0.084 0.824 0.411
X2 0.026 0.010 0.247 2.684 0.008
X3 -0.021 0.067 -0.026 -0.328 0.743
X4 0.063 0.026 0.235 2.418 0.017

Dependent variable: SLOPEY

In this analysis, both X, (measured atbaseline) and X, are significantlyand
positively related to the linear increase in the outcome variable Y between
t =1 and t = 6. Subjects with X; = 2 (i.e. females) have a 0.063 higher
slope than the subjects with X, = 1 (i.e. males). The way the ‘slope’ has to
be interpreted depends on the way time is modelled. Because in the example
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dataset the outcome variable Y is measured at yearly intervals, the slope of
the linear regression with time can be interpreted as the yearly increase in
outcome variable Y.

So far, three relatively simple analyses have been performed to invest-
igate the ‘longitudinal’ relationship between the outcome variable Y and
the four predictor variables X. It should be stressed that although all three
analyses were based on the same dataset, and were performed to determine
the longitudinal relationship between outcome variable Y and the four pre-
dictor variables X, the different analyses produce different results. It should
be realized that longitudinal relationships can be very complicated, and
that different types of analysis should be performed to investigate different
aspects of longitudinal relationships.

4.4 Longitudinal methods

With the development of (new) statistical techniques, such as GEE and
random coefficient analysis, it has become possible to analyse longitudinal
relationships using all available longitudinal data, without summarizing the
longitudinal development of each subject into one value. The longitudinal
relationship between a continuous outcome variable Y and one or more
predictor variable(s) X (Figure 4.3) can be described by Equation (4.1).

3
Yie = Bo + Z Bii Xij + €it (4.1)

j=1

where Yj; are observations for subject i at timet, B is the intercept, Xjj is the
independent variable j for subjecti at time t, §; is the regression coefficient
for independent variable j, J is the number of independent variables, and
&t is the ‘error’ for subject i at time t.

This model is almost the same as a cross-sectional linear regression model,
except for the subscripts t. These subscripts indicate that the outcome vari-
able Y is repeatedly measured on the same subject (i.e. the definition of
a longitudinal study), and that the predictor variable X can be repeatedly
measured on the same subject. In this model the coefficients of interest are
Bij> because these regression coefficients show the magnitude of the relation-
ship between the longitudinal development of the outcome variable (Yj;) and
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arbitrary value

time

Figure 4.3. Longitudinal relationship between outcome variable Y and predictor variable X

(m

outcome variable, e — — — predictor variable).

the development of the predictor variables (Xjj;). The first extension to this
model is the addition of a time indicator t (Equation (4.2)).

J
Yie =Bo + Z B Xig + Bt + &it (4.2)
j=1

where Yjy are observations for subject i at time t, B, is the intercept, Xj is the
independent variable j for subjecti at time t, §; is the regression coefficient
for independent variable j, J is the number of independent variables, t is
time, B, is the regression coefficient for time, and ¢j; is the ‘error’ for subject
i attimet.

This simple model can be extended to a general form, in which a correction
for both time-dependent covariates (Zj) and time-independent covariates
(Gim) is modelled (Equation (4.3)).

J K M
Yit = Bo + Z Bri Xig + ot + Z Bk Zike + Z PamGim + &it (4.3)

=1 k=1 m=1
where Yj; are observations for subject i at time t, f is the intercept, X is
the independent variable j for subjecti at time t, §; is the regression coeffi-
cient for independent variable j, J is the number of independent variables,
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t is time, B, is the regression coefficient for time, Zj is the time-dependent
covariate K for subject i at time t, B3 is the regression coefficient for time-
dependent covariate k, K is the number of time-dependent covariates, Gin
is the time-independent covariate m for subject i, Bym is the regression
coefficient for time-independent covariate m, M is the number of time-
independent covariates, and &, is the ‘error’ for subject i at time t.

In this general model, again the coefficients of interest are fj, because
these regression coefficients express the relationships between the longit-
udinal development of the outcome variable (Yj;) and the development of
different predictor variables (Xj). Predictor variables and covariates can
be either continuous, dichotomous or categorical. For the latter, the same
procedure as in cross-sectional linear regression analyses has to be followed,
i.e. dummy variables must be created for each of the categories. In the fol-
lowing sections two sophisticated methods (GEE and random coefficient
analysis) will be discussed. Both techniques are highly suitable for estimation
of the regression coefficients of the general model given in Equation (4.3).

4.5 Generalized estimating equations

4.5.1 Introduction

With GEE the relationships between the variables of the model at different
time-points are analysed simultaneously. So, the estimated S; reflects the
relationship between the longitudinal development of the outcome variable
Y and the longitudinal development of corresponding predictor variables X,
using all available longitudinal data (Figure 4.3). GEE is an iterative proced-
ure, using quasi-likelihood to estimate the regression coefficients (Liang and
Zeger, 1986; Zeger and Liang, 1986; Zeger et al., 1988; Zeger and Liang, 1992;
Liang and Zeger, 1993; Lipsitz et al., 1994a). The details of quasi-likelihood
will not be discussed. An extensive explanation of quasi-likelihood can be
found in several other publications (McCullagh, 1983; Nelder and Pregibon,
1987; Zeger and Qagqish, 1988; Nelder and Lee, 1992; Diggle et al,,
1994).

4.5.2 Working correlation structures

Because the repeated observations within one subject are not independent
of each other, a correction must be made for these within-subject correla-
tions. With GEE, this correction is carried out by assuming a priori a certain
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‘working’ correlation structure for the repeated measurements of the out-
come variable Y. Depending on the software package used to estimate the
regression coefficients, there is a choice between various correlation struc-
tures. The first possibility is an independent structure. With this structure
the correlations between subsequent measurements are assumed to be zero.
In fact, this option is counterintuitive because a special technique is being
used to correct for the dependency of the observations and this correlation
structure assumes independence of the observations:

ST S CHR VRN CH /3
tLt|— O 0 0 0 0
t o — 0 0 0 0
3 0 0o — 0 0 0
4 0 0 0o — 0 0
5 0 0 0 o — 0
s 0 0 0 0 0o —

A second possible choice for a working correlation structure is an exchange-
able structure. In this structure the correlations between subsequent mea-
surements are assumed to be the same, irrespective of the length of the time

interval:

ST S CHR VRN CH /3
b|— » p p p P
Lip — p p p P
Lo p — p p p
Lip p p — p p
1o p p p — p
K| p p p p p —

A third possible working correlation structure, the so-called (stationary)
m-dependent structure assumes that the correlations t measurements apart
are equal, the correlationst + 1 measurements apart are assumed to be equal,
and so on for t =1 to t = m. Correlations more than m measurements
apart are assumed to be zero. When, for instance, a ‘2-dependent correlation
structure’ is assumed, all correlations one measurement apart are assumed to
be the same, all correlations two measurements apart are assumed to be the
same, and the correlations more than two measurements apart are assumed
to be zero:
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t b ot ot ot
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A fourth possibility is an autoregressive correlation structure, i.e. the cor-
relations one measurement apart are assumed to be p; correlations two meas-
urements apart are assumed to be p?; correlations t measurements apart are
assumed to be pt.

t b 4y ot
t|— p' 0 Pt P
Lo — o P P Pt
| o> pt — p' Pt P
| o pP ot — o P
t | pt o 2 ot — P!
t | 0> p* P pt Pt —

The least restrictive correlation structure, is the unstructured correlation
structure. With this structure, all correlations are assumed to be different:

t L 6 1 ts ts
| — o P2 ps pa P
Lo — ps P pPs Po
G|l ps — P pu P2
L|lps o7 p0o — P13 Pu
51 o4 P8 P11 P13 — P15
| os P p2 pu P15 —

In the literature it is assumed that GEE analysis is robust against a
wrong choice of correlation matrix (i.e. it does not matter much which
correlation structure is chosen, the results of the longitudinal analysis
will be more or less the same) (Liang and Zeger, 1986; Zeger and Liang,
1986). However, when the results of analyses with different working
correlation structures are compared to each other, they differ in such a
way that they can lead to ‘wrong’ conclusions about longitudinal relation-
ships between several variables (Twisk et al., 1997). It is therefore impor-
tant to realize which correlation structure is most appropriate for the
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analysis. Unfortunately, with GEE there is no straightforward way to de-
termine which correlation structure should be used. One of the possibilities
is to analyse the within-subject correlation structure of the observed data to
find out which possible structure is the best approximation of the ‘real’ cor-
relation structure!. Furthermore, the simplicity of the correlation structure
has to be taken into account when choosing a certain working correlation
structure. The number of parameters (in this case correlation coefficients)
that need to be estimated differs for each of the various working correlation
structures. For instance, for an exchangeable structure only one correlation
coefficient has to be estimated, while for a stationary 5-dependent structure,
five correlation coefficients must be estimated. Assuming an unstructured
correlation structure in alongitudinal study with six repeated measurements,
15 correlation coefficients must be estimated. As a result, the power of the
statistical analysis is influenced by the choice of a certain structure. Basically,
the best choice is the simplest correlation structure which fits the data well.

In order to enhance insight in GEE analysis, the estimation procedure can
be seen as follows. First a ‘naive’ linear regression analysis is carried out, as-
suming the observations within subjects are independent. Then, based on the
residuals of this analysis, the parameters of the working correlation matrix are
calculated. The last step is to re-estimate the regression coefficients, correct-
ing for the dependency of the observations. Although the whole procedure
is slightly more complicated (i.e. the estimation process alternates between
steps two and three, until the estimates of the regression coefficients and
standard errors stabilize), it basically consists of the three above-mentioned
steps (see Burton et al., 1998).

In GEE analysis, the within-subject correlation structure is treated as a
‘nuisance’ variable (i.e. as a covariate). So, in principle, the way in which
GEE analysis corrects for the dependency of observations within one subject
is the way that has been shown in Equation (4.4) (which can be seen as an
extension of Equation (4.3)).

J
Yie = Bo+ Y BiyXig + ot + - - + CORRy; + & (4.4)

=1

! One must realize that, in fact, GEE corrects for correlated errors (gjt in Equations (4.1) to (4.3)). The
correlated errors are caused by the correlated observations, but they are not exactly the same. Adding
predictor variables to the longitudinal model, for instance, can lead to another correlation structure in
the errors than the one approximated by the within-subject correlation structure of the observed data.
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where Yj; are observations for subject i at time t, B, is the intercept, Xij is
the independent variable j for subjecti at timet, §; is the regression coeffi-
cient for independent variable j, J is the number of independent variables,
t is time, B, is the regression coefficient for time, CORR;; is the working
correlation structure, and &j; is the ‘error’ for subject i at time t.

4.5.3 Interpretation of the regression coefficients derived from GEE analysis
Basically, the regression coefficient B; for a particular predictor variable
relates the ‘vector’ of outcomes over time to the ‘vector’ of the predictor
variable over time:

Y: X4
Y, X5
Ys | X5
Ys Xs
_Y6_ _X6_

Unfortunately, there is no simple straightforward interpretation of the re-
gression coefficient §;. In fact, GEE analysis based on the model presented
here includes a ‘pooled’ analysis of longitudinal and cross-sectional rela-
tionships; or in other words, it combines a within-subject relationship with
a between-subjects relationship, resulting in one single regression coeffi-
cient. This has the following implications for interpretation of the regression
coefficients. Suppose that for a particular subject the value of an outcome
variable Y is relatively high at each of the repeated measurements, and that
this value does not change much over time. Suppose further that for that
particular subject the value of a particular predictor variable X is also relat-
ively high at each of the repeated measurements, and also does not change
much over time. This indicates alongitudinal ‘between-subjects’ relationship
between outcome variable Y and predictor variable X. Suppose that for an-
other subject the value of the outcome variable Y increases rapidly along the
longitudinal period, and suppose that for the same subject this pattern is also
found for predictor variable X. This indicates a ‘within-subject’ relationship
between outcome variable Y and predictor variable X. Both relationships
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lllustration of the relationship between two continuous variables. The
between-subjects relationship (a) and the within-subject relationship (b)
(m outcome variable, e — — — predictor variable).

are part of the overall longitudinal relationship between outcome variable Y
and predictor variable X, so both should be taken into account in the analysis
of the longitudinal relationship. The regression coefficient B;estimated with
GEE analysis ‘combines’ the two possible relationships into one regression
coefficient. Both phenomena are illustrated in Figure 4.4.

In Chapter 5, alternative models will be discussed with which it is possible
to obtain an estimation of only the ‘within-subject’ relationships.



68 Relationships with other variables

Table 4.1. Within-subject correlation structure for outcome variable Y

Y Yo Yis Yis Yis Yi6
Yui — 0.76 0.70 0.67 0.64 0.59
Y2 — 0.77 0.78 0.67 0.59
Yis — 0.85 0.71 0.63
Yia — 0.74 0.65
Yis — 0.69
Yt6 -

4.5.4 Example

4.5.4.1 Introduction
Before carrying out a GEE analysis, the within-subject correlation structure
must be chosen. As mentioned before, a possible choice for this working
correlation structure can be based on the correlation structure of the ob-
served data. Table 4.1 shows the observed correlation structure for outcome
variable Y.

The first correlation structure that should be considered is an independent
structure, i.e. all correlations are assumed to be zero. From Table 4.1 it can
be seen that the lowest correlation coefficient is 0.59, i.e. far from zero, so an
independent correlation structure does not appear to fit the observed data.
The second possibility is an exchangeable structure, i.e. all correlations are
assumed to be the same. The correlation coefficients range from 0.59 to 0.85.
They are not equal, but they are generally of the same magnitude. Another
possible correlation structure to consider is an m-dependent structure. With
six repeated measurements, the highest order for an m-dependent structure
is a 5-dependent structure (five time intervals). A lower-order-dependent
structure does not appear to fit, because it implies that there are correlations
close to zero, which is not the case in this particular situation. A 5-dependent
correlation structure indicates that all correlations one measurement apart
are equal, all correlations two measurements apart are equal, etc. Looking
at the observed correlation structure, the correlations one measurement
apart range from 0.69 to 0.85, the correlations two measurements apart range
between 0.65 and 0.78, the correlations three measurements apart range be-
tween 0.63 and 0.67, and the correlations four measurements apart range



69 Generalized estimating equations

between 0.59 and 0.64. In other words, a 5-dependent correlation struc-
ture fits the observed data quite well. From Table 4.1 it can be seen that an
autoregressive correlation structure is less appropriate than a 5-dependent
correlation structure. An autoregressive correlation structure assumes a steep
decrease in correlation coefficients when the time interval between measure-
ments increases. From Table 4.1 it can be seen that there is only a marginal
decrease in the magnitude of the correlation coefficients with an increasing
time interval. In every situation the unstructured correlation structure fits the
data best, but it is questionable whether in this particular situation the loss of
efficiency due to the estimation of 15 correlation coefficients is worthwhile —
probably not.

So, neither an exchangeable structure nor a 5-dependent structure are
perfect, but both seem to fit the observed data well. In such a situation, the
working correlation structure for which the least number of parameters need
to be estimated is the best choice. Therefore, in this particular situation an
exchangeable structure is chosen.

Output 4.4, Results of a GEE analysis performed
on the example dataset

Linear Generalized Estimating Equations
Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
0 Constant 3.617 0.680 0.000
2 TIME 0.108 0.014 0.000
4 X1 -0.024 0.274 0.931
5 X2 0.111 0.023 0.000
6 X3 -0.111 0.061 0.069
7 X4 0.101 0.131 0.440

n:147 s:0.747 #iter:12
Estimate of common correlation 0.562

4.5.4.2 Results of a GEE analysis
Output 4.4 shows the results of a GEE analysis that was applied to investigate
the relationship between the outcome variable Y and the four predictor vari-
ables X; to X, and time. Time is added to the model as a continuous variable
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coded as [1, 2, 3, 4, 5, 6], assuming a linear relationship with time. This is
(in principle) comparable to the within-subject time effect in MANOVA for
repeated measurements, although the latter did not assume a linear relation-
ship with time (see also Section 4.8).

The output is short, simple and straightforward. The first line of the output
indicates that a linear GEE analysis was performed. The analysis is called
‘linear’, because a continuous outcome variable is analysed. In the second
line, the outcome variable is mentioned (YCONT), together with the chosen
correlation structure (exchangeable). The next part of the output contains the
table with the regression coefficients, in which all the important information
can be found. First of all, the column and name of the predictor variable
are given. The column number refers to the column in which each specific
variable was found in the dataset: the TIME variable was found in column 2
and the four predictor variables were found in columns 4 to 7. Although
this is not important for the analysis, it shows directly that the data were
organized in a ‘long data structure’ (see Section 1.6).

For each of the predictor variables the regression coefficient, the standard
error of the coefficient and the corresponding p-value are given. The p-value
is based on the Wald statistic, which is defined as the square of the ratio
between the regression coefficient and its standard error. This statistic fol-
lows a x? distribution with one degree of freedom, which is equal to the
standard normal distribution squared. For example, for X, the Wald statistic
is calculated as (0.111/0.023)? = (4.83)2. According to the x? distribution,
the corresponding p-value is lower than 0.001. The interpretation of the
magnitude of the regression coefficient is twofold: (1) the between-subjects
interpretation indicates that a difference between two subjects of 1 unit in
the predictor variable X, is associated with a difference of 0.111 units in
the outcome variable Y; (2) the within-subject interpretation indicates that
a change within one subject of 1 unit in the predictor variable X, is asso-
ciated with a change of 0.111 units in the outcome variable Y. Again, the
‘real’ interpretation of the regression coefficient is a combination of both
relationships. However, from the analysis that has been performed it is not
possible to determine the contribution of each part.

From Output 4.4 it can be seen that X, is the only predictor variable which
is significantly related to the development of outcome variable Y, and that this
association is positive. For X3 a negative association is found (8 = —0.111),
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with a p-value close to the significance level of 5% (p = 0.069). The re-
sults also show that there is a significant linear increase over time of out-
comevariableY (8 = 0.108, p < 0.001), which was also concluded from the
MANOVA for repeated measurements. So, again, in principle GEE analysis
can provide the same information as MANOVA for repeated measurements
with a ‘one-within’ design. Adding an interaction between X, and time to
the GEE regression analysis will give similar information to MANOVA for
repeated measurements with a ‘one-within, one-between’ design. It should
be noted that in the simple GEE analysis a linear development over time is
assumed. It is also possible to assume a quadratic development (or any other
function) over time. To do so, a time squared (or any other function) term
has to be added to the model analysed with GEE analysis. Another possibility
is to treat the time variable as a categorical variable. The latter option will be
discussed in Section 4.8.

In the last two lines of the output some additional information about the
GEE model is given. The number of subjects (N = 147), the ‘standard devia-
tion of the model’ (s = 0.747), which is also known as the scale parameterz,
and the number of iterations needed to obtain the estimates of the regression
coefficients (#iter 12). With the ‘variance of the model’ an indication can be
acquired for the ‘explained variance’ of the model. To obtain this indication,
Equation (4.5) must be applied.

SZ
Fum1— (_r;gdel) (45)
Y

where S2 ,  is the variance of the model (given as s in the GEE output),
and S\z( is the variance of the outcome variable Y, calculated over all available
data.

The standard deviation of the outcome variable Y can be found in the
descriptive information of the data, which is shown in Output 4.5. From
Output 4.5 it can be seen that the standard deviation of outcome variable
Y is 0.813. Applying Equation (4.5) to the data from the GEE analysis leads
to an explained variance of 1 — (0.747)/(0.813)% = 15.6%. It should be
stressed that this is only a vague indication of the explained variance of the
model.

2 The scale parameter is also known as the dispersion parameter, and is related to the way in which the
variance of the outcome variable is related to the expected values of the outcome variable Y.
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Output 4.5. Descriptive information of data used in the GEE analysis

DESC (ST)

Col Name Size Mean StDev Min Max
1 D 882 228.769 154.862 1.00 471.00
2 TIME 882 3.500 1.709 1.00 .00
3 YCONT 882 4.500 0.813 2.40 50
4 X1 882 1.976 0.219 1.46 2.53
5 X2 882 3.743 1.530 1.57 12.21
6 X3 882 0.175 0.380 0.00 1.00
7 X4 882 1.531 0.499 1.00 2.00

The last line of the output of the GEE analysis gives an estimation of the
common correlation, which is 0.562. This common correlation is an estimate
of the correlation coefficient, which is used in the (exchangeable) working
correlation structure. Although this value is used in the estimation of the
regression coefficients, it is not important per se. From the output, the table
of regression coefficients gives the really relevant information. In general,
the regression coefficients, the standard errors (or a 95% confidence interval
based on these standard errors (8 £ 1.96 times the standard error)) and the
p-values are presented in the results of a GEE analysis.

4.5.4.3 Different correlation structures

Based on the observed correlation structure presented in Table 4.1, an ex-
changeable correlation structure was found to be the most appropriate choice
in this particular situation. In Section 4.5 it was already mentioned that in
the literature it is assumed that the GEE method is robust against a wrong
choice of correlation structure. To verify this, the example dataset was re-
analysed using different correlation structures. Output 4.6 shows the results
of the GEE analysis with different correlation structures. The second lines of
the outputs indicate the working correlation structures, and the estimated
correlation coefficients are given in the last part of the outputs. For an in-
dependent correlation structure no correlation coefficients were estimated,
while for a 5-dependent correlation structure five correlation coefficients
were estimated. For the unstructured correlation structure, 15 different cor-
relation coefficients were used in the analysis.



Output 4.6. Results of the GEE analysis with different correlation structures

Linear Generalized Estimating Equations
Response: YCONT Corr: Independence

Column Name Coeff StErr p-value
0 Constant 3.247 0.672 0.000
2 TIME 0.089 0.014 0.000
4 X1 0.113 0.270 0.675
5 X2 0.173 0.026 0.000
6 X3 -0.016 0.093 0.860
7 X4 0.046 0.131 0.728

n:147 s:0.742 #iter:12

Linear Generalized Estimating Equations
Response: YCONT Corr: 5-Dependence

Column Name Coeff StErr p-value
0 Constant 3.667 0.689 0.000
2 TIME 0.127 0.014 0.000
4 X1 -0.074 0.277 0.790
5 X2 0.087 0.023 0.000
6 X3 -0.104 0.061 0.091
7 X4 0.132 0.132 0.315

n:147 s:0.752 #iter:16
Estimate of common correlations 0.667, 0.524, 0.485, 0.582, 0.79

Linear Generalized Estimating Equations
Response: YCONT Corr: Unspecified

Column Name Coeff StErr p-value

0 Constant 3.780 0.714 0.000

2 TIME 0.089 0.013 0.000

4 X1 -0.009 0.289 0.976

5 X2 0.106 0.023 0.000

6 X3 -0.094 0.057 0.096

7 X4 0.092 0.136 0.496
n:147 s:0.755 #iter:13
Estimate of common correlation
1.000 0.758 0.692 0.652 0.600 0.552
0.758 1.000 0.759 0.761 0.628 0.566
0.692 0.759 1.000 0.821 0.673 0.620
0.652 0.761 0.821 1.000 0.692 0.617
0.600 0.628 0.673 0.692 1.000 0.648
0.552 0.566 0.620 0.617 0.648 1.000
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Table 4.2. Regression coefficients and standard errors estimated
by GEE analysis with different correlation structures

Correlation structure

Independent  5-Dependent  Exchangeable  Unstructured

X4 0.11(0.27)  —0.07 (0.27)  —0.02 (0.27)  —0.01 (0.29)
X 0.17 (0.03) 0.09 (0.02) 0.11 (0.02) 0.11 (0.02)
X3 —0.02 (0.09) —0.11(0.06) —0.11(0.06) —0.09 (0.06)
X4 0.05 (0.13) 0.13 (0.13) 0.10 (0.13) 0.09 (0.14)
Time 0.09 (0.01) 0.13 (0.01) 0.11 (0.01) 0.09 (0.01)

Table 4.2 summarizes the results of the analysis with different working
correlation structures. From Table 4.2 it can be seen that, although the con-
clusions based on p-values are the same, there are some differences in the
magnitude of the regression coefficients. This is important, because it is far
more interesting to estimate the magnitude of the association by means of the
regression coefficients and the 95% confidence intervals than just estimating
p-values. Based on the results of Table 4.2, it is obvious that it is important to
choose a suitable correlation structure before a GEE analysis is performed.

To put the importance of correcting for the dependency of observations
in a broader perspective the results of the GEE analysis can be compared to
a ‘naive’ longitudinal analysis, ignoring the fact that repeated observations
are carried out on the same subjects (i.e. a linear regression analysis carried
out on a total longitudinal dataset). Output 4.7 shows the results of such a
‘naive’ linear regression analysis carried out on the example dataset.

A comparison between Output 4.6 (Table 4.2) and Output 4.7 indicates
that the regression coefficients obtained from the ‘naive’ longitudinal ana-
lysis are exactly the same as the regression coefficients obtained from a GEE
analysis with an independent correlation structure. The standard errors of
the regression coefficients are however totally different. In general, ignoring
the dependency of the observations leads to an under-estimation of the
standard errors of the time-independent predictor variables and an over-
estimation of the standard errors of the time-dependent predictor vari-
ables. For the time-independent predictor variables in the naive analysis, it is
assumed that each measurement within a particular subject provides 100%
new information, while part of the information was already available in
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Output 4.7. Results of a ‘naive’ linear regression analysis performed on the
example dataset

Linear Regression Analysis
Response: YCONT

Column Name Coeff StErr p-value SS
0 Constant 3.247 0.357 0.000 17858.699
2 TIME 0.089 0.016 0.000 41.034
4 X1 0.113 0.145 0.433 8.968
5 X2 0.173 0.020 0.000 49.288
6 X3 -0.016 0.069 0.814 051
7 X4 0.046 0.064 0.479 2717

df:876 RSg:0.171 s:0.742 RSS:482.461

earlier measurements of that subject, reflected in the within-subject cor-
relation coefficient. Depending on the magnitude of that coefficient, each
repeated measurement within one subject provides less than 100% new
information. This leads to larger standard errors in the corrected analysis.
For the time-dependent predictor variables, however, GEE analysis makes
use of the fact that the same subjects are measured over time. This leads to
lower standard errors of the regression coefficients.

4.5.4.4 Unequally spaced time intervals

Because time is one of the predictor variables in the model used to analyse
the relationships between outcome variable Y and several predictor variables
(Equation (4.3)), it is simple to add unequally spaced time intervals to the
model. Suppose that in the example dataset, the first four measurements
were carried out at yearly intervals, and the fifth and sixth measurements at
5-year intervals. So, time must be coded as [1, 2, 3, 4, 9, 14] instead of [1, 2,
3,4, 5, 6]. When such a dataset is considered, the results of the GEE analysis
change considerably (see Output 4.8).

It is expected that the relationship between the outcome variable Y and
time changes when the time intervals are unequally spaced. It is import-
ant to realize that the relationship with the other four predictor variables
also changes (see Figure 4.5). For predictor variable X3 (a dichotomous
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Regression coefficients estimated by GEE analysis with a dataset with equally
spaced time intervals (w) and a dataset with unequally spaced time intervals (o).

Output 4.8. Results of the GEE analysis with a dataset
with unequally spaced time intervals

Linear Generalized Estimating Equations
Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
0 Constant 3.900 0.693 0.000
2 TIME 0.060 0.005 0.000
4 X1 -0.098 0.279 0.727
5 X2 0.077 0.020 0.000
6 X3 -0.161 0.054 0.003
7 X4 0.131 0.132 0.322

n:147 s:0.731 #iter:12
Estimate of common correlation 0.621

time-dependent predictor variable), for instance, when the repeated meas-
urements were equally spaced a non-significant result was found, while
when the repeated measurements were unequally spaced a highly significant
relationship was observed. These differences emphasize the importance of
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adding an actual time indicator to the statistical model, especially when the
time intervals are unequally spaced (see also Section 4.8).

4.6 Random coefficient analysis

4.6.1 Introduction

Random coefficient analysis is also known as multilevel analysis or mixed-
effect analysis (Laird and Ware, 1982; Longford, 1993; Goldstein, 1995).
Multilevel analysis was initially developed in the social sciences, more specif-
ically for educational research. Investigating the performance of pupils in
schools, researchers realized that the performances of pupils within the same
class are not independent, i.e. their performances are more or less correl-
ated. Similarly, the performances of classes within the same school can be
dependent on each other. This type of study design is characterized by a hier-
archical structure. Students are nested within classes, and classes are nested
within schools. Various levels can be distinguished. Because the performances
of pupils within one class are not independent of each other, a correction
should be made for this dependency in the analysis of the performance of the
pupils. Multilevel analysis is developed to correct for this dependency, for
instance by allowing for different regression coefficients for different classes.
As this technique is suitable for correlated observations, it is obvious that
it is also suitable for use in longitudinal studies. In longitudinal studies the
observations within one subject over time are correlated. The observations
over time are nested within the subject. The basic idea behind the use of mul-
tilevel techniques in longitudinal studies is that the regression coefficients are
allowed to differ between subjects. Therefore the term random coefficient
analysis is preferred to the term multilevel analysis.

4.6.2 Random coefficient analysis in longitudinal studies
The simplest form of random coefficient analysis is an analysis with only a
random intercept. The corresponding statistical model with which to analyse
a longitudinal relationship between an outcome variable Y and time is given
in Equation (4.6).

Yit = Boi + Bit + &t (4.6)
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Figure 4.6. Development over time of a particular outcome variable Y; different intercepts for

different subjects (m

population, e — — — individuals 1 to n).

where Yj; are observations for subject i at time t, By; is the random intercept,
t is time, B, is the regression coefficient for time, and & is the ‘error’ for
subjecti attimet. Whatis new about this model (compared to Equation (4.2))
is the random intercept Boi, i.e. the intercept can vary between subjects.
Figure 4.6 illustrates this phenomenon.

Itisalso possible that the interceptis not random, but that the development
of a certain variable over time is allowed to vary among subjects or, in other
words, the ‘slope’ with time is considered to be random. This phenomenon
is illustrated in Figure 4.7 and in Equation (4.7).

Yit = Bo + Biit + &it (4.7)

where Yj; are observations for subject i at time t, By is the intercept, t is time,
Bii is the random regression coefficient for time, and ¢ is the ‘error’ for
subject i at time t.

The most interesting possibility is the combination of a random inter-
cept and a random slope with time, which is illustrated in Figure 4.8 and
Equation (4.8).

Yie = Boi + Biit + &it (4.8)
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is the remaining ‘error’ variance (i.e. /sigma_e). The STATA output does not
give the variances, but the standard deviations (indicated by /sigma). The
variances can easily be obtained by calculating the square of the standard
deviations. The last coefficient shown is rho, which is an estimation of the
intraclass correlation coefficient (ICC). The ICC is calculated as the variance
of the intercepts (i.e. (sigma_u)?) divided by the total variance (which is the
sum of (sigma_u)? and (sigma_e)?). The ICC can be used as an indication of
the within-subject dependency.

The last line of the output gives the results of another likelihood ratio test.
This likelihood ratio test is related to the random part of the model, and
for this test, the —2 log likelihood of the presented model is compared to
the —2 log likelihood which would have been found if the same analysis was
performed without a random intercept. Apparently, the difference in —2 log
likelihood between the two models is 463.17, which follows a x ? distribution
with one degree of freedom; one degree of freedom, because the difference in
parameters between the two models compared is one (i.e. the random vari-
ation in intercepts sigma_u). This value is highly significant (Prob > chi2 =
0.0000), which indicates that in this situation a random intercept should be
considered. In the coefficient table in which the two variance components
were given, for each standard deviation the standard error, the z-statistic, the
corresponding p-value and the 95% confidence interval were also shown. It
is very tempting to use the z-statistic of the random variation in intercepts
to evaluate the importance of considering a random intercept. However, one
must realize that the z-statistic is a normal approximation, which is not very
valid, especially in the evaluation of variance parameters. In other words, it is
advised to use the likelihood ratio test to evaluate the importance of allowing
random coefficients.

To verify the importance of a random intercept, Output 4.10 shows the
results of an analysis in which no random coefficient is considered. First of
all, it can be seen that the total error variance (i.e. dispersion 0.6148249) is
the sum of the two error variances shown in Output 4.9. Secondly, the log
likelihood of this model is —1035.99227, which produces a —2 log likelihood
0f 2071.98. Performing the likelihood ratio test between the model with and
without a random intercept gives (as expected from Output (4.9)) a value of
463.17, which is highly significant.
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Output 4.10. Results of a ‘naive’ regression analysis with no random intercept

Log likelihood = -1035.99227

Residual df = 880 No. of obs = 882
Pearson X2 = 541.0459 Deviance = 541.0459
Dispersion = 0.6148249 Dispersion = 0.6148249

Gaussian (normal) distribution, identity link

time 0.1262974 0.0154596 8.170 0.000 0.0959554 0.1566394
_cons 4.057732 0.0602065 67.397 0.000 3.939567 4.175897

In the two models considered, the B coefficient describing the relation-
ship between outcome variable Y and time is considered to be fixed (i.e. not
assumed to vary between subjects). The next step in the modelling process
is to add a random slope to the model, i.e. to let B; vary among subjects
(Equation (4.7)). The result of a random coefficient analysis with such a
model is shown in Output 4.11.

Output 4.11. Results of random coefficient analyses with a random
intercept and a random slope

log likelihood = -795.25898

ycont Coeff sStd. Err. z P > |z| [95% Conf. Intervall

time 0.1263673 0.0111119 11.372 0.000 0.1045884 0.1481463
_cons 4.060211 0.0560216 72.476 0.000 3.95041 4.170011

0.23010497 (0.01355609)

Variances and covariances of random effects

***level 2 (id)
var(l): 0.262258 (0.05560083)

cov(l,2): 0.00610365 (0.00892569) cor(l,2): 0.16848744
var(2): 0.00500397 (0.00239667)
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This output looks slightly different to the output shown earlier for the situ-
ation with a random intercept. It is less extensive, but the important infor-
mation is provided. First of all, the log likelihood is given (i.e. —795.25898).
This is the likelihood value related to the total model, including both regres-
sion coefficients and variance components. This value can be used to evaluate
the importance of the inclusion of a random slope in the model. Therefore,
the —2loglikelihood of this model must be compared to the —2 loglikelihood
of the model without a random slope. The difference between the —2 log
likelihoods is 1608.8 — 1590.5 = 18.3. This value follows a x2-distribution
with a number of degrees of freedom equal to the difference in the number
of parameters estimated by the two models. Although only a random slope
is added to the model, two extra parameters are estimated. Obviously, one of
the estimated parameters is the variance of the slopes, and the other (not so
obviously) is the covariance between the random intercept and the random
slope. This can be seen from the last part of the output. First of all, the variance
atlevel 1 is given. This is the remaining overall error variance (i.e. (sigma_e)?).
Secondly, the variances and covariances of random effects are given. The first
variance given (var(1) 0.262258 (0.05560083)) is an estimation of the random
variation in intercepts with the corresponding standard error, while the
second variance (var(2) 0.00500397 (0.00239667)) provides the same infor-
mation for the random variation in slopes. The output also gives the cov(1,2)
(0.00610365 (0.00892569)) and the cor(1,2) (0.16848744). These are values
indicating the covariance and correlation between the random intercept and
random slope. The magnitude and direction of the covariance/correlation
between random intercept and random slope give information about the
interaction between random intercept and slope. When a negative corre-
lation is found, subjects with a high intercept have lower slopes. When a
positive correlation is found, subjects with a high intercept also have a high
slope (see Figure 4.10).

Because the correlation is calculated from the covariance, the model with
a random slope has two more parameters than the model with only a ran-
dom intercept. So, the value calculated earlier with the likelihood ratio test
(i.e. 18.3) follows a x? distribution with two degrees of freedom. This value
is highly significant, so in this situation not only a random intercept seems
to be important, but also a random slope.

The next step is to add the predictor variables to the statistical model, in
order to investigate the relationship between outcome variable Y and the four
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Figure 4.10. (a) Negative correlation between slope and intercept, (b) positive correlation
between slope and intercept.

predictor variables X; to X4. Output 4.12 shows the results of the random
coefficient analysis.

From Output 4.12 it can be seen that the four predictor variables X; to
X4 are assumed to be fixed. There are no more random variances estimated
than in the analysis shown in Output 4.11. This is not really necessary but
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Output 4.12. Results of random coefficient analyses with a random intercept and a
random slope with time in order to investigate the relationship between outcome variable
Y and the four predictor variables X; to X,

log likelihood = -778.89879

ycont Coeff Std. Err Z P > |z| [95% Conf. Intervall
time 0.1098585 0.0122515 8.967 0.000 0.085846 0.1338711
x1 -0.0244138 0.2705055 -0.090 0.928 -0.5545948 0.5057672
x2 0.1070983 0.0206451 5.188 0.000 0.0666346 0.147562
x3 -0.1206264 0.0597928 -2.017 0.044 -0.2378181 -0.0034346
x4 0.0415465 0.1202568 0.345 0.730 -0.1941526 0.2772455
_cons 3.721137 0.6609747 5.630 0.000 2.425651 5.016624
Variance at level 1
0.22480938 (0.01311782)
Variances and covariances of random effects
***level 2 (id)
var (1) : 0.26543988 (0.05671975)
cov(l,2): -0.00049603 (0.00908093) cor(l,2): -0.01395848
var (2) : 0.00475738 (0.00217723)

seems to be appropriate in most situations. Because all regression coefficients
related to the predictor variables are assumed to be fixed, the output from the
last analysis looks similar to that in Output 4.11. The difference is that now
the relationships between outcome variable Y and the four predictor vari-
ables are estimated. The coefficients can be tested for significance with the
Z-statistic, which has been described earlier. For instance, for X, the regres-
sion coefficient (0.107) divided by the standard error (0.021) gives a z-statistic
of 5.188, which is highly significant. For the other variables the same pro-
cedure can be followed. The log likelihood value obtained by this analysis is
(again) the likelihood of the total model. A comparison between the —2 log
likelihood of this model and the —2 log likelihood derived from the analysis
presented in Output 4.11 gives an indication of the importance of all predic-
tor variables. In this example, the difference between the —2 log likelihoods
is 32.72, which follows a x? distribution with four degrees of freedom (four
predictor variables were added and no extra random regression coefficients).
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This likelihood ratio test gives p < 0.001. It should be noted that the likeli-
hood values of two different models can only be compared with each other
when one model is an extension of the other model.

The interpretation of the regression coefficients of the four predictor vari-
ables from a random coefficient analysis is exactly the same as the inter-
pretation of the regression coefficients estimated with GEE analysis, so the
interpretation is twofold: (1) the ‘between-subjects’ interpretation indicates
that a difference between two subjects of 1 unit in, for instance, the predictor
variable X, is associated with a difference of 0.107 units in the outcome vari-
able Y; (2) the ‘within-subject’ interpretation indicates that a change within
one subject of 1 unit in the predictor variable X is associated with a change
of 0.107 units in the outcome variable Y. Again, the ‘real’ interpretation is a
combination of both relationships.

The way the analysis is built up in this example, it is possible that owing
to some of the predictor variables added to the model, the variance due to
the random intercept and/or random slopes is no longer important. So, in
fact, the necessity of a random intercept and random slope(s) should be
re-investigated with the total model, i.e. the model with the four predictor
variables. Therefore, firstly the results of the analysis given in Output 4.12
can be compared with the results obtained from an analysis with the four
predictor variables but without a random slope with time. Secondly, the re-
sults can be compared with the results obtained from an analysis with the
four predictor variables but without a random intercept.

4.6.3.2 Unequally spaced time intervals

What has been seen in the results of the GEE analysis performed on a dataset
with unequally spaced time intervals is exactly the same for the results of
the random coefficient analysis (Figure 4.11). There are striking differences
between the results of the dataset with equally spaced time intervals and
the results of the dataset with unequally spaced time intervals. Not only has
the regression coefficient of time changed considerably, but the regression
coefficients of the four predictor variables have also changed.

4.6.4 Comments

In the first lines of the outputs it was indicated that a maximum likeli-
hood estimation procedure had been performed. There is some debate in
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Figure 4.11. Regression coefficients estimated by random coefficient analysis with a dataset

with equally spaced time intervals (w) and a dataset with unequally spaced time
intervals (0).

the literature about whether maximum likelihood is the best way to estimate
the regression coefficients in a random coefficient analysis. Some statisticians
believe that restricted maximum likelihood is a better estimation procedure.
It is also argued that maximum likelihood estimation is more suitable for
the estimation of the fixed effects (i.e. for estimation of the regression coeffi-
cients), while restricted maximum likelihood estimation is more suitable for
estimation of the different variance components (Harville, 1977; Laird and
Ware, 1982; Pinheiro and Bates, 2000). It should be realized that in practice
one is interested more in the regression coefficients than in the magnitude
of the variance components.

To facilitate the discussion, all the models have been restricted to simple
linear models, i.e. no squared terms, no complicated relationships with time,
no difficult interactions, etc. This does not mean that it is not possible to
use more complicated models. When looking at possible interaction terms,
special attention must be paid to the interactions between each of the
predictor variables with time. These interactions indicate in which part of
the longitudinal period the observed relationships are the strongest. To illus-
trate the interpretation of an interaction with time, an interaction between
X, and time was added to the model described in Output 4.12. Output 4.13
shows the results of the analysis.
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Output 4.13. Results of a random coefficient analysis, with an interaction between X, and

time

log likelihood = -757.23705

x3

x4
time
inttx2

Coeff Std. Err Z P > |z| [95% Conf. Intervall
-0.2433723 0.2870338 -0.848 0.397 -0.8059483 0.3192036
-0.1022496 0.0374449 -2.731 0.006 -0.1756403 -0.0288589
-0.1185118 0.0579058 -2.047 0.041 -0.2320051 -0.0050186

0.0790463 0.1224855 0.645 0.519 -0.1610209 0.3191136
-0.0670296 0.0293231 -2.286 0.022 -0.1245018 -0.0095573
0.0493359 0.0074909 6.586 0.000 0.0346539 0.0640179
4.821793 0.7090097 6.801 0.000 3.43216 6.211427

0.21329023 (.01271139)

Variances and covariances of random effects

***x]level 2 (id)

var (1) :
cov(l,2):
var (2) :

0.2979293 (0.06051497)
-0.0005461 (0.00943201) cor(l,2): -0.0178419
0.00314448 (0.00219192)

The most interesting part of the output is the importance of the interac-
tion between X, and time. This can be evaluated in two ways: firstly with the
Z-statistic of the interaction term, and secondly with the likelihood ratio test
between the model with the interaction and the model without the inter-
action. The z-statistic for the interaction term has a value of 6.586, and a
corresponding p-value of 0.000, i.e. highly significant. The likelihood ratio
test is based on the difference between the —2 log likelihood of the model
without an interaction (from Output 4.12 the —2 log likelihood can be cal-
culated as 1557.8) and the —2 log likelihood of the model with an interaction
(from Output 4.13 the —2 log likelihood can be calculated as 1514.4). This
differenceis 43.4, which followsa x > distribution with one (i.e. the interaction
term) degree of freedom, which is highly significant. In general, for evalu-
ation of the regression coefficients, the z-statistic produces similar results to
the likelihood ratio test, but the latter is assumed to be slightly better. The
significant interaction between X, and time indicates that the relationship
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between X, and the outcome variable Y differs along the longitudinal pe-
riod. The sign of the regression coefficient related to the interaction term
is positive. This suggests that the relationship between X, and Y becomes
stronger as time increases. In fact, from Output 4.13, the magnitude of the
relationship between X, and Y at each of the different time-points can be
estimated by combining the regression coefficient for X, and the regression
coefficient for the interaction term.

4.7 Comparison between GEE analysis and random coefficient analysis

In the foregoing paragraphs the general ideas behind GEE analysis and ran-
dom coefficient analysis were discussed. Both methods are highly suitable
for the analysis of longitudinal data, because in both methods a correction
is made for the dependency of the observations within one subject: in GEE
analysis by assuming a certain working correlation structure, and in random
coefficient analysis by allowing the regression coefficients to vary between
subjects. The question then arises: Which of the two methods is better?
Which method is the most appropriate to answer the research question:
‘Whatis the relationship between the development of outcome variable Y and
several predictor variables X?” Unfortunately, no clear answer can be given. In
principle, GEE analysis with an exchangeable correlation structure is the same
as random coefficient analysis with only a random intercept. The correction
for the dependency of observations with an exchangeable ‘working correla-
tion’ structure is the same as allowing subjects to have random intercepts.
When an exchangeable correlation structure is not appropriate, GEE analy-
sis with a different correlation structure can be used. When an exchangeable
correlation structure is appropriate, and there is no random variation in one
of the estimated regression coefficients (except the intercept), GEE analysis
and random coefficient analysis are equally appropriate. When there is sig-
nificant and relevant random variation in one (or more) of the regression
coefficients, random coefficient analysis can be used, with the additional
possibility of allowing other coefficients to vary between subjects.

It is very important to realize that the differences and equalities between
GEE analysis and random coefficient analysis described in this section only
hold for continuous outcome variables. For dichotomous and categorical
outcome variables, the situation is different (see Chapters 6 and 7).
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4.7.1 Extensions of random coefficient analysis

To summarize, a GEE analysis with an exchangeable correlation structure
is the same as a random coefficient analysis with only a random intercept.
The assumption of random coefficient analysis is that the random inter-
cepts between individuals are normally distributed with mean zero and a
certain variance (which is estimated by the statistical software package and
given in the output). Although this assumption is quite sufficient in many
situations, sometimes the random variation is not normally distributed.
Therefore, some software packages (e.g. STATA) provide the possibility of
modelling (to some extent) the distribution of the variation in the regression
coefficients (see for instance Rabe-Hesketh et al., 2001a).

In GEE analysis there is some flexibility in modelling the correlation struc-
ture, which is not available in ‘standard’ random coefficient analysis. There-
fore, in some software packages (e.g. S-PLUS), the random coefficient analysis
can be extended by adding a correlation structure to the model. The pos-
sible correlation structures are basically the same as has been described for
GEE analysis (see Section 4.5.2). In fact, this additional correction can be
carried out when the random coefficients are not sufficient to correct for the
dependency of observations. In more technical terms, despite the correction
made by the random coefficients, the ‘error’ is still correlated within subjects,
which indicates that an additional correction is necessary.

Although this additional correction is an interesting extension of the
‘standard’ random coefficient analysis, it should be used with caution. This is
mostly because there is a danger of ‘over-correction’. It is for instance possible
to model both a random intercept and an additional exchangeable correla-
tion structure. Because the two options are exactly the same, this will lead
to ‘over-correction’ and corresponding problems with the estimation and
interpretation of the regression coefficients.

4.7.2 Equal variances over time
With GEE analysis only one variance parameter is estimated. This suggests
more or less that the variance in outcome variable Y remains equal over
time. This is, however, not always true. It is very likely that in a longit-
udinal study a change in variance over time in the outcome variable Y
occurs. This phenomenon is also known as ‘heteroscedasticity’ In random
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coefficient analysis the change in variance over time in the outcome vari-
able Y is (partly) taken into account by the possibility of a random slope.
It is, however, possible that a random slope is not sufficient to correct for
the changing variance over time. Or in other words, despite the correction
due to the random slope, the ‘error variance’ is still changing over time.
Therefore, in some software packages (e.g. S-PLUS) additional modelling of
the variance over time is possible. This is done by adding a certain ‘variance
function’ to the random coefficient model. For more information reference
should be made to for instance Pinheiro and Bates (2000).

4.7.2.1 A numerical example

It is interesting to illustrate the influence of a changing variance over time
on the magnitude of the regression coefficients of a simple longitudinal
data analysis. Consider the two (simple) longitudinal datasets shown in
Figure 4.12. In both datasets nine subjects were measured twice in time.

In the first longitudinal dataset, there is an increase of the variance in out-
come variable YVARI at the follow-up measurement, while in the second lon-
gitudinal dataset (YVAR2), there is a decrease in variance over time. For both
datasets the research question is related to the development over time. Both
datasets are analysed with GEE analysis, with random coefficient analysis with
onlyarandom intercept, and with random coefficient analysis with arandom
intercept and a random slope. Table 4.3 shows the results of the analyses.

It is not surprising that the results of the GEE analysis and the random
coefficient analysis with only a random intercept are exactly the same. Fur-
thermore, it is also not surprising that the regression coefficients for time
are more or less the same for all three analyses. The difference between GEE
analysis and random coefficient analysis with both a random intercept and a
random slope is observed in the standard error of the regression coefficient
for time. Allowing a random slope leads to a decrease in the standard error of
the regression coefficient. In other words, it leads to a more efficient estimate
of the standard error.

4.7.3 The correction for covariance

In some software packages (e.g. SAS) the correction for the correlated ob-
servations and the (possible) changing variance over time is combined in a
correction for the ‘covariance’ The ‘covariance’ between two measurements
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Figure 4.12. Two simple longitudinal datasets used to illustrate the influence of a changing
variance over time; one dataset with an increase in variance over time (a) and one
dataset with a decrease in variance over time (b).

is a combination of the correlation between the two measurements and the
variances of the two measurements (Equation 4.10).

covar (Yy, Yey1) = corr (Y, Yeyr) sd (Ye) sd (Yeqr) (4.10)
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Table 4.3. Regression coefficients and standard errors (in parentheses)
for time estimated with different analyses on two (simple) longitudinal
datasets given in Figure 4.12

Random coefficient Random coefficient
analysis with random analysis with random
GEE analysis intercept intercept and slope
YVARI1 5.00 (0.63) 5.00 (0.63) 5.02 (0.43)
YVAR2 —2.50 (0.31) —2.50 (0.31) —2.50 (0.24)

where covar(Yy, Yii1) is the covariance between Y at t and Y at t + 1,
corr(Yy, Yii1) is the correlation between Y att and Y att + 1, and sd(Yy) is
the standard deviation of Y att.

Comparable to the correction for the correlation between the observations
used in GEE, there are many different possibilities for the correction for the
‘covariance’ between observations (see Chapter 12 for details). Again, basic-
ally the correction is made for the ‘error covariance’, which is equal to the
covariance of the repeated observations in an analysis without any predictor
variables.

4.7.4 Comments

In the foregoing sections it was often mentioned that sophisticated analyses
are needed to correct for correlated observations. However, basically the cor-
rection in longitudinal data analysis is carried out for correlated ‘errors’. The
same holds for the changing variance over time. When there are no predictor
variables in the model, the correlation and changing variance over time are
equivalent to the same phenomena observed in the ‘errors’ It is possible that
by adding certain predictor variables to the model (part of) the correlation
or changing variance over time is ‘explained’ Because of this in the literat-
ure ‘correlated observations’ is sometimes followed by ‘given the predictor
variables in the statistical model.

4.8 The modelling of time

In the foregoing sections, for both GEE and random coefficient analysis,
time was modelled as a continuous variable. A major disadvantage of this
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Table 4.4. Example dataset with time as a continuous variable and as a categorical
variable with dummy coding

S

Time (categorical)

Time (continuous) Dummyl Dummy?2 Dummy3 Dummy4 Dummy5

R ST NS N S i S R N R S T

AN U R WD = N R WD

O O O O O O O O o —~ O
O O O = O O O O o~ O O
SO O = O O O O O = O O O
SO = O O O O O~ O O O O
—_ O O O O O = O O O o o

approach is that the development over time of outcome variable Y is mod-
elled as a linear function. This is certainly not always true. It has already
been mentioned that one of the possible ways to handle this is to model the
development over time as a quadratic, or cubic function, etc. With all this
modelling, however, there is still some underlying assumption of the shape
of the development over time for outcome variable Y . A very elegant solution
is to model time as a categorical variable instead of a continuous one. With
time as a categorical variable, the ‘real” development over time is modelled,
without assuming a certain shape of that relationship. Table 4.4 illustrates
part of the example dataset with time as a categorical variable.

It should be taken into account that with time as a categorical variable in a
situation with six repeated measurements, five regression parameters must be
estimated. Inthe samesituation, with timeasa continuousvariableand assum-
ing a linear relationship, only one regression coefficient must be estimated.
So, modelling time as a categorical variable is only interesting when the num-
ber of repeated measurements is low (compared to the number of subjects).

Another limitation of the use of time as a categorical variable is the
fact that this is only possible when the time intervals between the repeated
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Table 4.5. Example of a dataset with four repeated measurements (N = 3)
with time as a continuous variable with equal measurement points and time
as the actual date of measurement

ID Time (continuous) Date (in days)
1 1 0
1 2 20
1 3 45
1 4 100
2 1 0
2 2 30
2 3 40
2 4 80
3 1 0
3 2 25
3 3 50
3 4 70

measurements are the same for each subject. It is obvious that with unequal
time intervals between subjects, the dummy coding goes wrong.

In the examples presented in this chapter, each subject was assumed to
be measured at the same time-points. Time was simply coded as [1, 2, 3, 4,
5, 6]. However, with both GEE analysis and random coefficient analysis it
is possible to model the actual time of each measurement. For instance, the
number of days or weeks after a certain baseline measurement can be used
as a time indicator (Table 4.5). This is far more realistic, because subjects
are almost never measured at exactly the same time. For each subject this
indicates that a different time sequence of the measurements is modelled,
which directly implies that time cannot be modelled as a categorical variable.

Sections 4.5.4.4 and 4.6.3.2 discussed the results of a longitudinal analy-
sis of the relationships between an outcome variable Y and several predic-
tor variables with unequally spaced time intervals. The results tended to be
quite different from the situation in which equally spaced time intervals were
considered. These differences were found between two datasets that only dif-
fered in the coding of the time variable. It should be noted that if time is used
as a categorical variable, this difference does not occur. This is due to the
fact that in the dummy coding the real time intervals are no longer included.
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Output 4.14. Results of two GEE analyses: one GEE
analysis with time as a continuous variable (A), and
one GEE analysis with time as a categorical variable (B)

(A) Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
0 Constant 4.058 0.056 0
2 TIME 0.126 0.011 0

n:147 s:0.784 #iter:10

Estimate of common correlation 0.595

(B) Linear Generalized Estimating Equations
Response: YCONT Corr: Exchangeable
Column Name Coeff StErr p-value
0 Constant 4.435 0 0
8 TIMEl -0.112 0 0
9 TIME2 -0.169 0 0
10 TIME3 -0.261 0.046 0.000
11 TIME4 0.241 0 0
12 TIMES 0.691 0 0
n:147 s:0.749 #iter:10
Estimate of common correlation 0.674

When one is only interested in the relationship with time, this is no problem;
the only thing one should worry about then is a correct interpretation of the
different dummy variables. However, when one is interested in the relation-
ship with other variables than time, this can lead to major problems in the

interpretation of the regression coefficients.

Another problem with the use of dummy variables for the coding of time
arises when there are missing observations. In such situations, it is possible
that the dummy variable coding does not have the same meaning as it should

have for a complete dataset.

4.8.1 Example

Output 4.14 shows the results of a GEE analysis in which the outcome vari-
ableY is related to time as a continuous outcome variable, assuming a linear
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The modelling of time
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The modelled development of outcome variable Y over time, estimated with two
different GEE analyses (m time continuous, e — — — time categorical).

relationship with time. In the same output, the results of a GEE analysis
are shown in which the outcome variable Y is related to time as a categor-
ical variable, coded as dummy variables in such a way as has been presented in
Table 4.4.

From the first part of the output (4.14(A)) it can be seen that the regres-
sion coefficient of time is 0.126, which indicates that there is an increase
over time in outcome variable Y, and that for an increase in each time unit
(i.e. a year) the outcome variable Y increases with 0.126 units. The second
part of the output (4.14(B)) shows quite a different picture. The regres-
sion coefficients of the five dummy variables (there were six meas-
urements in the example dataset, so there are five dummy variables) can
be interpreted as follows: compared to the first measurement (which is the
reference ‘category’), there is a decrease in outcome variable Y at the sec-
ond measurement (8 = —0.112). At the third measurement the decrease
continues (8 = —0.169), and at the fourth measurement the lowest point
is reached. At the fifth and the sixth measurements the value of outcome
variable Y is higher than the baseline value, indicating a steep increase dur-
ing the last two measurements. Figure 4.13 illustrates the results of both
models.

It is quite clear that the modelling of time as a categorical variable is much
closer to the ‘real’ observed development over time for outcome variable Y.
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Output 4.15. Results of two GEE analyses to determine
the longitudinal relationship between outcome variable Y
and four predictor variables: one with time as a continuous
variable (A) and one with time as a categorical variable (B)

(A) Linear Generalized Estimating Equations
Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
0 Constant 3.617 0.680 0.000
2 TIME 0.108 0.014 0.000
4 x1 -0.024 0.274 0.931
5 X2 0.111 0.023 0.000
6 X3 -0.111 0.061 0.069
7 X4 0.101 0.131 0.440

n:147 s:0.747 #iter:12
Estimate of common correlation 0.562

(B) Linear Generalized Estimating Equations
Response: YCONT Corr: Exchangeable

Column Name Coeff StErr p-value
0 Constant 3.988 0.688 0.000
4 X1 -0.029 0.276 0.918
5 X2 0.103 0.019 0.000
6 X3 -0.084 0.054 0.117
7 X4 0.111 0.130 0.393
8 TIMElL -0.118 0.038 0.002
9 TIME2 -0.190 0.045 0.000

10 TIME3 -0.299 0.047 0.000
11 TIME4 0.154 0.059 0.009
12 TIMES 0.620 0.070 0.000

n:147 s:0.711 #iter:12
Estimate of common correlation 0.646

The following step is to investigate the consequences of the different ways
of modelling time for the magnitude of the regression coefficients reflecting
the longitudinal relationship with other variables. Therefore both time indic-
ators were used in the analysis of the longitudinal relationship between the
outcome variable Y and the four predictor variables X; to X4. Output 4.15
shows the results of these two GEE analyses. From Output 4.15 it can be
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seen that there are some differences between the two analyses, but that these
differences are only marginal.

To summarize, when one is interested in the development over time of a
particular outcome variable, when the number of repeated measurements is
not very large, when the repeated measurements are equally spaced between
subjects, and when there are no missing observations, it is highly recom-
mended that time should be modelled as a categorical variable. In all other
situations, it is more appropriate to model time as a continuous variable.



Other possibilities for modelling
longitudinal data

5.1 Introduction

In Chapter 4, GEE analysis and random coefficient analysis were introduced
as two (sophisticated) methods that can be used to analyse the longitudinal
relationship between an outcome variable Y and several predictor variables.
In this chapter, the models described in Chapter 4 (which are known as
standard or marginal models) are slightly altered in order to answer specific
research questions.

5.2 Alternative models

5.2.1 Time-lag model

102

Itis assumed that the greatest advantage of a longitudinal study design in epi-
demiological research is that causal relationships can be detected. However,
in fact this is only partly true for experimental designs (see Chapter 9). In
observational longitudinal studies in general, no answer can be given to the
question of whether a certain relationship is causal or not. With the stand-
ard or marginal models already described in Chapter 4, it is only possible
to detect associations between an outcome variable Y and one (or more)
predictor variable(s) X. When there is some rationale about possible cau-
sation in observational longitudinal studies, these associations are called
‘quasi-causal relationships’ In every epidemiological textbook a list of argu-
ments can be found which can give an indication as to whether or not
an observed relationship is causal (see Table 1.1). One of these concerns
the temporal sequence of the relationship. When the predictor variable X
precedes the outcome variable Y, the observed relationship may be causal
(Figure 5.1).
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CAUSE \ EFFECT
(X) (Y)
t=t t=t+1

Figure 5.1. Temporalsequence between predictorvariable (cause) and outcomevariable (effect).

arbitrary value

time

Figure 5.2. lllustration of the time-lag model; predictor variable X is modelled prior to the
outcome variable Y (u outcome variable, o - - - predictor variable).

With a small change in the standard models described in Chapter 4, this
time sequence between predictor variables X and outcome variable Y can
be modelled. In this so-called time-lag model the predictor variables X are
modelled prior in time to the outcome variable Y (Figure 5.2). The corres-
ponding equation is:

1
Yie = By + Z BijXijt—1+ - -+ (5.1)
j=1
where Yj; are observations for subject i at time t, B is the intercept, Xjj—;
is the independent variable j for subject i at time t — 1, B; is the regression
coefficient for independent variable j, and J is the number of independent
variables.
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In a time-lag model the predictor variables X at time-point t — 1 are
related to the outcome variable Y at time-point t. The remaining part of
the model is equivalent to the standard model described in Chapter 4 (see
Equation (4.3)).

Both the time-lag model and the standard model pool together longit-
udinal and cross-sectional relationships into one regression coefficient.
This is sometimes hard to understand, but it indicates that both the rela-
tionships between absolute values at each time-point (‘between-subjects’
relationships) and the relationships between changes between subsequent
time-points (‘within-subject’ relationships) are used to estimate the overall
regression coefficients (see Section 4.5.3). The only difference between the
time-lag model and the standard model is that the time-lag model takes into
account the temporal sequence of a possible cause and effect. The question
then arises: should a time-lag model be used in every situation in which a
causal relationship is suspected? The answer is no! In fact, a time-lag model
can only be useful when the time periods between subsequent measurements
are short. When the time periods are long, the biological plausibility of a time
lag between predictor variable X and outcome variable Y is not very clear.
Furthermore, sometimes a time lag is already taken into account in the way
a certain predictor variable is measured. For instance, when a lifestyle para-
meter such as dietary intake or physical inactivity is used as predictor variable
in relation to some sort of disease outcome, both lifestyle parameters are
often measured by some method of retrospective recall (e.g. measurement of
the average amount of dietary intake of a certain nutrient over the previous
three months). In other words, when a time lag is included in the method of
measuring the predictor variable X, a statistical time-lag model is not very
appropriate. In general, the usefulness of a time-lag model depends on the
biological plausibility of a time lag in the relationship analysed.

It is also possible that the results of a time-lag model are a reflection of the
results that would have been found in a standard model. This occurs when
the relative stability (see Chapter 11) of both the outcome variable and the
predictor variable of interest is rather high. In fact, the standard/marginal
relationships carry over to the time-lag relationship through the relative
stability of the variables involved in the relationship investigated. Figure 5.3
illustrates this phenomenon.



105

Alternative models

predictor |- - — - - - - » predictor

1 1

1 1

1 1

1 1

1 1

A4 ¥
outcome  |T """~~~ > outcome

t=t t=t+1

Figure 5.3. A time-lag relationship can be a reflection of the standard relationship when the

relative stability of both the outcome variable and the predictor variable is high.

5.2.2 Modelling of changes

As mentioned before, both the standard model and the time-lag model pool
together ‘between-subjects’ and ‘within-subject’ relationships. Although this
is an important strength of the analysis, it also limits the interpretation
of the results in such a way that no separation can be made between the
two aspects of longitudinal relationships. This can be a problem especially
when the variation in absolute values between subjects exceeds the changes
over time within subjects. In this particular situation, in the pooled analysis
the longitudinal within-subject relationships will be more or less overruled
by the cross-sectional between-subjects relationships (see Figure 5.4). This
problem arises in particular when the time periods between subsequent
measurements are relatively short, or when there is a strong (mostly non-
observable) influence from the background variables (see Section 5.4).

Because of this limitation of both the standard model and the time-lag
model, a model can be used in which the cross-sectional part is more or
less ‘removed’ from the analysis. One possibility is not to model absolute
values at each time-point, but to model changes between two consecutive
measurements of both the outcome variable Y and the predictor variables X
(Figure 5.5). The corresponding equation is:

)
(Yit — Yitm1) = Bo + Z Bij (Xijp — Xije—1) + - - - (5.2)

j=1
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arbitrary value

/\/
-

time

Figure 5.4. lllustration of a longitudinal study in which the changes over time within one
subject are less than the differences between subjects; the cross-sectional
relationships will ‘overrule’ the longitudinal relationships.

arbitrary value

time

Figure 5.5. lllustration of the modelling of changes; changes in predictor variable X are related
to changes in the outcome variable Y (m outcome variable, e - - - predictor
variable).
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where Yj; are observations for subject i at time t, Yj;_; is the observation for
subject i at time t — 1, B is the intercept, Xjj; is the independent variable
j for subject i at time t, Xji_; is the independent variable j for subject i at
time t — 1, Byj is the regression coefficient for independent variable j, and J
is the number of independent variables.

The remaining part of the model can be the same as in the standard model,
but the changes for the time-dependent covariates can also be modelled. The
modelling of changes looks quite simple, but it can be very complicated,
owing to the difficulty of defining changes between subsequent measure-
ments (see Chapter 8).

5.2.3 Autoregressive model
Another way in which to ‘remove’ the cross-sectional part of the relationships
is to use an autoregressive model. Autoregressive models are also known as
Markov models, conditional models or transition models, and an extensive
amount of literature has been devoted to these types of models (Rosner
et al., 1985; Rosner and Munoz, 1988; Zeger and Qaqish, 1988; Stanek et al.,
1989; Lindsey, 1993). The corresponding equation is:

]
Yie = Bo + Z B Xiji—1 + B2 Yi—1 + - - (5.3)

i=1

where Yj; are observations for subject i at time t, B is the intercept, Xjj—;
is the independent variable j for subject i at time t — 1, B; is the regres-
sion coefficient for independent variable j, J is the number of independent
variables, Yji_; is the observation for subject i at time t — 1, and f, is the
autoregression coefficient.

In an autoregressive model the value of the outcome variable Y at time-
pointt isrelated not only to the value of the predictor variable X at time-point
t — 1, but also to the value of the outcome variable Y att — 1. The remaining
part of the model is usually the same as in the standard model. The model
shown in Equation (5.3) is called a ‘“first-order’ autoregressive model, because
the outcome variable Y at time-point t is only related to the value of the out-
come variable Y att — 1. In a ‘second-order’ or ‘third-order’ autoregressive
model, the outcome variable Y attime-pointt isalso related to the value of the
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standard model: time-lag model:
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Overview of different models used to analyse the longitudinal relationship
between an outcome variable Y and a predictor variable X.

outcome variable Y att — 2 ort — 3. The idea underlying the autoregressive
model is that the value of an outcome variable at each time-point is primarily
influenced by the value of this variable one measurement earlier. To estimate
the ‘real’ influence of the predictor variables on the outcome variable, the
model should therefore correct for the value of the outcome variable at
time-pointt — 1.

5.2.4 Overview

Figure 5.6 gives an overview of the way in which the regression coefficients
of interest relate the development of a particular predictor variable X to the
development of an outcome variable Y in the different (alternative) models
used to analyse longitudinal data. It should be noted that, like the standard
model, all alternative models can also be modelled with random coefficients.

5.2.5 Example
5.2.5.1 Introduction

In the following example the results of the three mentioned alternative mod-
els will be compared to the standard model (described in Chapter 4). For
all three models both GEE analysis and random coefficient analysis will be
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used to estimate the regression coefficients. When GEE is used a correction
is made for the within-subjects correlations by assuming a certain ‘working
correlation structure’. It was argued that the choice of a particular structure
can be based on the observed within-subject correlations of the outcome
variable Y. When the longitudinal analysis is limited to the ‘within-subject’
relationships (i.e. modelling of changes and the autoregressive model), the
correction for the within-subject correlations is somewhat different than for
the standard model. When changes are modelled, the within-subject correla-
tions between the changes are in general much lower than the within-subject
correlations of the ‘absolute’ values. The same is true for the autoregressive
model. The latter is perhaps a bit difficult to understand, but it has to do
with the fact that in GEE analysis a correction is made for the ‘correlated
errors, rather than for the correlated ‘observations’ Although this is basic-
ally the same, in an autoregressive model part of the correlations in the
observations is ‘explained’ by the addition of the outcome variable Y att — 1
to the model. In an autoregressive model, the within-subject correlations
of the ‘errors’ are therefore different from the within-subject correlations of
the ‘observations’. In fact, in both the modelling of changes and the autore-
gressive model, correction for the within-subject correlations is part of the
model. In those situations, an independent correlation structure will (often)
be the most appropriate choice.

In the modelling of changes yet another problem arises, because changes
between subsequent measurements can be defined in many different ways
(see Chapter 8). In the following examples the changes are defined as the
absolute change between subsequent measurements.

5.2.5.2 Data structure for alternative models

There is no statistical software available which is capable of performing one
of the alternative models automatically. For the alternative modelling of
longitudinal data, the dataset has to be reconstructed so that the standard
software can be used for either GEE analysis or random coefficient analysis.
The way in which the data should be reconstructed is illustrated in Figure 5.7.

5.2.5.3 GEE analysis

The output of the GEE analysis, used to answer the question of whether there
is a longitudinal relationship between outcome variable Y and the predictor
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standard model

1D Y X time time-lag model
1 3.5 153 1 1D Y X time
1 3.7 143 2

1 3.9 201 3 1 3.7 1.53 2

1 3.0 222 4 1 3.9 143 3

1 32 212 5 1 3.0 201 4

1 3.2 1.95 6 1 32 222 5

2 4.1 200 1 1 32 212 6

2 4.1 230 2 2 42 2.00 2

I.V 5.0 1.78 5 N 4.7 1.78 6

N 47 199 6

modelling of changes autoregressive model
ID Yo=Y, Xi— X, _, time ID Y Y _4 X, time
1 -02 0.10 1 1 37 35 143 2

1 -02  -058 2 1 39 37 201 3

1 09  -0.20 3 1 30 39 222 4

1 -02 0.10 4 132 30 212 5

1 0.0 0.17 5 1 32 32 195 6

2 -01  -0.30 1 2 42 41 230 2

N 03  -021 5 N 47 50 199 6

Figure 5.7. Data structures for various models used to analyse longitudinal relationships.

variables X; to X4 and time, based on alternative longitudinal models is
shown in Output 5.1 (time-lag model), Output 5.2 (modelling of changes)
and Output 5.3 (autoregressive model).

In addition to the changes in outcome variable Y, in the modelling of
changes, the changes in the predictor variable X, are added to the model.
For all other predictor variables the absolute values, either at baseline (for
the time-independent predictor variables X; and X4) or at the start of the
time period over which the changes are calculated (for the time-dependent
predictor variable X3),areadded to the model. Furthermore, from Output 5.2
it can be seen that an independent correlation structure has been chosen as
‘working correlation structure’ Therefore, the last line of the output, which
provides the estimation of the common correlation, is lacking.
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Output 5.1. Results of a GEE analysis with
a time-lag model

Linear Generalized Estimating Equations

Response: YCONT Corr: Exchangeable
Column Name Coeff StErr p-value
0 Constant 2.883 0.719 0.000
2 TIME 0.156 0.017 0.000
4 X1 0.123 0.287 0.668
5 X2 0.151 0.031 0.000
6 X3 0.097 0.070 0.164
7 X4 0.128 0.130 0.323

n:147 s:0.733 #iter:12
Estimate of common correlation 0.577

Output 5.2. Results of a GEE analysis with
modelling of changes

Linear Generalized Estimating Equations

Response: DELY Corr: Independence
Column Name Coeff StErr p-value
0 Constant -0.615 0.182 0.001
2 TIME 0.161 0.013 0.000
4 X1 0.059 0.076 0.431
5 DELX2 0.084 0.025 0.001
6 X3 0.118 0.056 0.036
7 X4 0.077 0.031 0.015

As for the modelling of changes, an independent correlation structure
is also chosen for the autoregressive model (Output 5.3). Moreover, in the
output a new predictor variable is present (YCONTPRE). This predictor
variable is the value of outcome variable Y measured one time-point earlier
(see explanation of the autoregressive model in Section 5.2.3). From the
output it can be seen that the value of Y att — 1 is highly positively related
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Output 5.3. Results of a GEE analysis with an
autoregressive model

Linear Generalized Estimating Equations

Response: YCONT Corr: Independence

Column Name Coeff StErr p-value
0 Constant -0.125 0.251 0.619
2 TIME 0.154 0.013 0.000
4 X1 0.139 0.096 0.149
5 X2 0.091 0.014 0.000
6 X3 0.012 0.048 0.802
7 X4 0.027 0.043 0.531
8 YCONTPRE 0.767 0.025 0.000

n:147 s:0.506 #iter:12

Table 5.1. Regression coefficients and standard errors regarding the longitudinal
relationship (estimated by GEE analysis) between outcome variable Y and several
predictor variables (X; to X, and time); the standard or marginal model compared to
alternative models

Standard model =~ Time-lagmodel =~ Modelling of changes ~ Autoregressive model
X4 —0.02 (0.27) 0.12 (0.29) 0.06 (0.07) 0.14 (0.10)
X2 0.11 (0.02) 0.15 (0.03) 0.08 (0.03) 0.09 (0.01)
X3 —0.11 (0.06) 0.10 (0.07) 0.12 (0.06) 0.01 (0.05)
X4 0.01 (0.13) 0.13 (0.13) 0.08 (0.03) 0.03 (0.04)
Time 0.11 (0.01) 0.16 (0.02) 0.16 (0.01) 0.15 (0.01)

to the development of outcome variable Y, which is of course not really
surprising. The regression coefficient of the predictor variable YCONTPRE
is also known as the autoregression coefficient. In Table 5.1 the results of the
different GEE analyses are summarized.

5.2.5.4 Random coefficient analysis
The output of arandom coefficient analysis to answer the question of whether
there is a longitudinal relationship between outcome variable Y and the
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predictor variables X; to X4 and time, based on alternative longitudinal
models, is shown in Output 5.4 (time-lag model), Output 5.5 (modelling of
changes) and Output 5.6 (autoregressive model). The predictor variables in
the random coefficient analysis were modelled in the same way as has been
described for the corresponding GEE analysis.

Output 5.4. Results of a random coefficient analysis with a time-lag model

log likelihood = -640.37118
ycont Coeff std. Err Z P > |z| [95% Conf. Intervall
time 0.1582593 0.01579 10.023 0.000 0.1273114 0.1892072
x1 0.100344 0.2783983 0.360 0.719 -0.4453067 0.6459947
%2 0.1406945 0.0248505 5.662 0.000 0.0919884 0.1894006
x3 0.0958463 0.0662912 1.446 0.148 -0.034082 0.2257746
x4 0.1318902 0.1204924 1.095 0.274 -0.1042707 0.368051
cons 2.948436 0.677334 4.353 0.000 1.620886 4.275986

0.20557651 (0.01383197)

Variances and covariances of random effects

var (1) :
cov(l,2):
var (2) :

0.29172121 (0.08177964)
-0.01191011 (0.01513772) cor(l,2): -0.25634858
0.00739949 (0.00364189)

From the output of both the modelling of changes and the autoregressive
model, it can be seen that both the variance of the random intercept and the
variance of the random slope are close to zero, although for the modelling of
changes this is far more pronounced than for the autoregressive model. So,
assuming a random interceptand arandom slope in the longitudinal random
coefficient model is not really necessary. In fact, this finding is comparable
to the fact that in the GEE analysis for these two alternative models an
independent correlation structure is considered to be the most appropriate
choice for a ‘working correlation structure’. In Table 5.2 the results of the
different random coefficient analyses are summarized.
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Output 5.5. Results of a random coefficient analysis with modelling of changes

log likelihood = -571.64658

dely Coeff std. Err Z P > |z| [95% Conf. Intervall
time 0.1613603 0.0143233 11.266 0.000 0.1332871 0.1894334
x1 0.0594099 0.109767 0.541 0.588 -0.1557295 0.2745492
delx2 0.0842789 0.020463 4.119 0.000 0.0441722 0.1243857
x3 0.1178238 0.0569115 2.070 0.038 0.0062793 0.2293684
x4 0.0769342 0.0474924 1.620 0.105 -0.0161492 0.1700175
cons -0.6151973 0.2684902 -2.291 0.022 -1.141428 -0.0889663
Variance at level 1
0.27737764 (0.01446915)
Variances and covariances of random effects
***level 2 (id)
var(l): 7.729x1071% (0.00002627)
cov(l,2): -3.125x107'% (0.0000106) cor(1,2): -1

var(2): 1.263x107'% (4.280x107%)

5.3 Comments

Although the magnitude of the regression coefficients for the different mod-
els cannot be interpreted in the same way, a comparison between the re-
gression coefficients and standard errors shows directly that the results are
quite different. Using an alternative model can lead to different conclusions
than when using the standard model. On the one hand this is strange, because
all analyses attempt to answer the question of whether there is a relationship
between outcome variable Y and the four predictor variables and time. On the
other hand, however, with the four models, different parts of the longitudinal
relationships are analysed, and the results of the models should be interpreted
in different ways. To obtain the most general answer to the question of
whether there is a longitudinal relationship between the outcome variable Y
and the four predictor variables and time, the results of several models should
be combined (Twisk, 1997). In practice, however, this almost never happens:
a priori the most appropriate model is chosen (usually the ‘standard’ model),
and only those results are reported.
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Output 5.6. Results of a random coefficient analysis with an autoregressive model

log likelihood = -538.88027

ycont Coeff  Std. Err. zZ P > |z| [95% Conf. Intervall]
time 0.1544628 0.0141067 10.950 0.000 0.1268142 0.1821114

x1 0.1319348 0.1086507 1.214 0.225 -0.0810165 0.3448862

X2 0.090171 0.0148155 6.086 0.000 0.0611331 0.1192089

x3 0.0077988 0.0486855 0.160 0.873 -0.0876232 0.1032207

x4 0.0317883 0.0491346 0.647 0.518 -1.0645138 0.1280903
ycontpre 0.760324 0.0291116 26.118 0.000 0.7032664 0.8173816
_cons -0.0883166 0.2944095 -0.300 0.764 -0.6653485 0.4887154

0.2483483 (0.01470989)

Variances and covariances of random effects

var (1) :
cov(l,2):
var (2) :

0.0134973 (0.02323551)
-0.00475411 (0.00739352) «cor(l,2): -1
0.00167453 (0.00239752)

Table 5.2. Regression coefficients and standard errors regarding the longitudinal

relationsh
several pr

ip (estimated by random coefficient analysis) between outcome variable Y and
edictor variables (X; to X, and time); the standard or marginal model compared

to alternative models

Standard model =~ Time-lagmodel =~ Modelling of changes ~ Autoregressive model

X
X3
X3
Xy
Time

—0.01 (0.27) 0.10 (0.28) 0.06 (0.11) 0.13 (0.11)
0.11 (0.02) 0.14 (0.02) 0.08 (0.02) 0.09 (0.01)
—0.12 (0.06) 0.10 (0.07) 0.11 (0.06) 0.01 (0.05)
0.04 (0.12) 0.13 (0.12) 0.08 (0.05) 0.03 (0.05)
0.11 (0.01) 0.16 (0.02) 0.16 (0.01) 0.15 (0.01)

In Chapter 4 it has already been mentioned that GEE analyses do not
give reliable information about the ‘fit’ of the statistical model, whereas with
random coefficient analysis, likelihood values can be obtained. However,
when deciding which model should be used to obtain the best answer to



116

Possibilities for modelling longitudinal data

a particular research question, comparing the ‘fit’ of the models will not
provide much interesting information. First of all, only the time-lag model
and the autoregressive model can be directly compared to each other, be-
cause the autoregressive model can be seen as an extension of the time-lag
model. The modelling of changes is totally different, while in the standard
model more observations are used than in the alternative models. The prob-
lem is that the number of observations highly influences the likelihood of
each specific statistical model. Looking at the fit of the models, it is obvi-
ous for instance that the autoregressive model provides a much better fit
than the time-lag model. This is due to the fact that a high percentage of
variance of the outcome variable Y at time-point t is explained by the value
of the outcome variable Y at t — 1. This can be seen from the values of
the scale parameter (S) presented in the GEE output and the log likelihood
presented in the output of the random coefficient analysis. Both values are
much lower in the autoregressive model than in the time-lag model. This
does not mean that the autoregressive model should be used to obtain the
best answer to the question of whether there is a longitudinal relationship
between outcome variable Y and one (or more) predictor variable(s) X. In
general, it should be realized that it is better to base the choice of a specific
longitudinal model on logical considerations instead of statistical ones. If,
for instance, it is expected that a predictor variable measured at time-point
t will influence the outcome variable at time-point t + 1, then a time-lag
model is suitable. If, however, it is expected that the predictor and outcome
variables are more directly related, a time-lag model is not suitable, and so
forth.

As with the standard model discussed in Chapter 4, in order to simplify the
discussion the models presented in Chapter 5 were all simple linear models:
no squared terms, no complicated relationships with time, no difficult in-
teractions, etc. Furthermore, in the explanation of the various alternative
models it was mentioned that the remaining parts of the models were the
same as the standard model. This is not necessarily true. It is also possible to
combine different models with each other. For instance, in the autoregres-
sive model (Equation (5.3)) the outcome variable at time-point t (Yj;) was
related to the predictor variable at time-point t — 1 (Xj_;), corrected for
the value of the outcome variable at t — 1 (Yj—1). It is, however, possible to
remove the time lag from this model, by using the value of the predictor
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variable at t, instead of its value at time-point t — 1. It must be stressed,
however, that the choice of possible combinations of different models must
also be based on logical considerations and on the research questions to be
answered.

It has already been mentioned that with the modelling of changes and
with the autoregressive model the between-subject part of the analysis is
more or less removed from the analysis. With both models only the longit-
udinal relationships are analysed. It is therefore surprising that the results
of the longitudinal analyses with the modelling of changes and the autore-
gressive model are quite different (see Tables 5.1 and 5.2). One reason for
the difference in results is that both alternative models use a different model
of change. This can be explained by assuming a longitudinal study with just
two measurements. In the autoregressive model, Y, = By + B1Y1, while in
the modelling of changes, Y, — Y1 = By (where 8y is the absolute change
between subsequent measurements), which is equal to Y, = 8y + Y;. The
difference between the two equations is the coefficient 8. In the modelling
of changes the ‘change’ is a fixed parameter, while in the autoregressive model
the ‘change’ is a function of the value of Y, (for a detailed explanation of this
phenomenon, see Chapter 8). Another reason for the differences in results
between the modelling of changes and the autoregressive model is the dif-
ferent modelling of the predictor variables. It has already been mentioned
that for the modelling of changes the changes in the predictor variables were
also modelled. In the autoregressive model, however, the predictor variables
measured at t — 1 were used. It is obvious that different modelling of the
predictor variables can lead to different results. To illustrate this, Output 5.7
shows the results of an autoregressive model, in which the predictor vari-
ables are modelled in the same way as has been described for the modelling
of changes.

From Output 5.7 it can be seen that (as expected) the results of an autore-
gressive model with the predictor variables modelled as changes are closer
to the results of the modelling of changes than when the predictor variables
were modelled at t — 1. The most important message which emerges is that
the modelling of the predictor variables can highly influence the results of
the longitudinal analyses performed with alternative models. In other words,
one should be very careful in the interpretation of the regression coefficients
derived from such models.
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Output 5.7. Results of a GEE analysis with an
autoregressive model, in which the predictor variables
are modelled in the same way as in the modelling of
changes

Linear Generalized Estimating Equations

Response: YCONT Corr: Independence
Column Name Coeff StErr p-value

0 Constant 0.262 0.258 0.310

2 TIME 0.174 0.013 0.000

4 X1 -0.005 0.101 0.964

5 DELX2 0.063 0.024 0.010

6 X3 0.028 0.048 0.565

7 X4 0.115 0.042 0.006

8 YCONTPRE 0.810 0.022 0.000

n:147 s:0.516 #iter:11

Table 5.3. Standardized regression coefficients and 95% confidence intervals
(calculated with GEE analysis) regarding the longitudinal relationship between
lung function parameters (forced vital capacity (FVC) and the forced
expiratory volume in one second (FEV1)) and smoking behaviour; a
comparison between the standard model and the modelling of changes

FVC FEV1
Standard model —0.03 (—0.11 to 0.06) —0.01 (—0.09 to 0.06)
Modelling of changes —0.13 (—0.22 to —0.04)** —0.14 (—0.25 to —0.04)**

*p < 0.01.

5.4 Another example

One of the most striking examples to illustrate the necessity of using in-
formation from different models has been given in a study also based on
data from the Amsterdam Growth and Health Longitudinal Study (Twisk
et al., 1998a). The purpose of that study was to investigate the relationship
between smoking behaviour and the development of two lung function pa-
rameters: forced vital capacity (FVC) and forced expiratory volume in one
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second (FEV1). Although the results of the standard model did not show
any relationship between smoking behaviour and the development of lung
function parameters, the modelling of changes revealed a strong negative
relationship between smoking behaviour and the development of both lung
function parameters (see Table 5.3). So, although the absolute values of the
lung function parameters were not influenced by smoking behaviour, the
changes in lung function parameters over time were highly influenced by
smoking behaviour. This study is a nice example of the situation illustrated
earlier in Figure 5.4.
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6.1 Simple methods

6.1.1 Two measurements

120

When a dichotomous outcome variable is measured twice over time in the
same subjects, a 2 x 2 table can be constructed as shown below (where n
stands for the number of subjects and p stands for a proportion of the total
number of subjects N ).

t
1 2 Total
4 1 N (P11) N12(P12) Nieny (Piceny)
2 Ny1(P21) N22(P22) Nactny (Pactn)
Total Nice2) (Pice2)) Nact2) (P2ct2)) N(1)

The simplest way to estimate the development over time is to compare the
proportion of subjects in group 1 at t;( ;1)) with the proportion of sub-
jects in group 1 at t,(Pyt2)). The difference in proportions is calculated as
(Pit2) — Pict1))> and Equation (6.1) shows how to calculate the correspond-
ing standard error:

M) + N

N (6.1)

SE(Pit2) — Pitny) =

where SE is the standard error, pj(t,) is the proportion of subjects in group 1
att = 2, py(1) is the proportion of subjects in group 1 att = 1, Nyty) is the
number of subjects in group 1 at t = 2, ny(;) is the number of subjects in
group 1 att = 1, and N is the total number of subjects.

The 95% confidence interval for the difference (difference &= 1.96 times the
standard error) is used to answer the question of whether there is a significant
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change over time. The problem with the difference in proportions is that it
basically provides an indication of the difference between the changes in
opposite directions. If all subjects from group 1 att = 1 move to group 2 at
t = 2, and all subjects from group 2 att = 1 move to group 1 att = 2, the
difference in proportions reveals no changes over time.

A widely used method to determine whether there is a change over time in
a dichotomous outcome variable is the McNemar test. This is an alternative
x* test, which takes into account the fact that the observed proportions in the
2 x 2 table are not independent. The McNemar test is, in principle, based
on the difference between N, and n,;, and the test statistic follows a x?
distribution with one degree of freedom (Equation (6.2)).

(N —ny — 1)’

(6.2)
N2 + Ny

where Ny, is the number of subjects in group 1 att = 1 and in group 2 at
t = 2, and ny; is the number of subjects in group 2 at t = 1 and in group 1
att = 2.

The McNemar test determines whether the change in one direction is equal
to the change in another direction. So the McNemar test has the same dis-
advantages as have been mentioned above for the difference in proportions.
It tests the difference between the changes in opposite directions.

A possible way in which to estimate the total change over time is to calcu-
late the proportion of subjects who change from one group to another: i.e.
P12 + Pa1- This ‘proportion of change’ can be tested for significance by means
of the 95% confidence interval (£1.96 times the standard error). The stand-
ard error of this proportion is calculated as:

pchange - (1 - pchange)

SE( pchange) = \/ N (63)

where SE is the standard error, Pchange is the ‘proportion of change’ equal to
P12 + P21, and N is the total number of subjects.

If one is only interested in the proportion of subjects who change in a
certain direction (i.e. only a ‘decrease’ or ‘increase’ over time) the same
procedure can be followed for separate changes. In this respect, a ‘proportion
of increase’ equal to p;, or a ‘proportion of decrease’ equal to p,; can be
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calculated and a 95% confidence interval can be constructed, based on the
standard error calculated with Equation (6.3).

It should be noted that when all individuals belong to the same group
at baseline, the estimate of the change in opposite directions is equal to the
estimate of the total change over time. In that situation, which often occurs
in experimental studies, all methods discussed so far can be used to estimate
the change over time in a dichotomous outcome variable.

6.1.2 More than two measurements

When more than two measurements are performed on the same subjects, the
multivariate extension of the McNemar test can be used. This multivariate
extension is known as Cochran’s Q, and it has the same disadvantages as
the McNemar test. It is a measure of the difference between changes in
opposite directions, while in longitudinal studies one is generally interested
in the total change over time. To analyse the total change over time, the
‘proportion of change’ can be calculated in the same way as in the situation
with two measurements. To do this, (T — 1) 2 x 2 tables must first be con-
structed (fort =1andt = 2, fort = 2 andt = 3, and so on). The next step
is to calculate the ‘proportion of change’ for each 2 x 2 table. To calculate
the total proportion of change, Equation (6.4) can be applied:

N

_ 1
p= mZCi (6.4)

i=1

where p is the total ‘proportion of change’, N is the number of subjects, T is
the number of measurements, and ¢; is the the number of changes for
individual i over time.

6.1.3 Comparing groups

To compare the development over time between two groups, for a dicho-
tomous outcome variable the ‘proportion of change’ in the two groups can
be compared. This can be done by applying the test for two independent
proportions: (Pg — Pg2). The standard error of this difference (needed to
create a 95% confidence interval and for testing whether there is a significant
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difference between the two groups) is calculated by Equation (6.5):

SE(y — por) = \/[pgl(l - pglq . [pgzu - pgz)] 63)

Ngi Ng2

where SE is the standard error, pg is the ‘proportion of change’ in group 1,
Py is the ‘proportion of change’ in group 2, N,; is the number of subjects in
group 1, and Ng, is the number of subjects in group 2.

Of course, this procedure can also be carried out to determine the ‘pro-
portion of change’ in a certain direction (i.e. the ‘proportion of increase’ or
the ‘proportion of decrease’). It should be realized that the calculation of
the ‘proportion of change’” over a particular time period is primarily useful
for the longitudinal analysis of datasets with only two measurements.
For more information on the analysis of proportions and differences in pro-
portions, reference is made to the classical work of Fleiss (1981).

6.1.4 Example

6.1.4.1 Introduction
The dataset used to illustrate longitudinal analysis with a dichotomous out-
come variable is the same as that used to illustrate longitudinal analysis with
continuous outcome variables. The only difference is that the outcome vari-
able Y is dichotomized (Y gicn). This is done by means of the 66th percentile.
At each of the repeated measurements the upper 33% are coded as ‘1, and
the lower 66% are coded as ‘0’ (see Section 1.4).

6.1.4.2 Development over time
To analyse the development of a dichotomous outcome variable Y gic, over
time, the situation with two measurements will first be illustrated. From
the example dataset the first (t = 1) and the last (t = 6) measurements will
be considered. Let us first investigate the 2 x 2 table, which is presented in
Output 6.1.

Because the dichotomization of outcome variable Y 4;, was based on a fixed
value (the 66th percentile), it is defined that there is no difference between
the changes over time in opposite directions. The proportion of subjects
in group 1 att =1 (33.3%) is almost equal to the proportion of subjects
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Output 6.1. 2 x 2 table indicating the relationship
between the outcome variable Y, att=1and t=6

YDICHT1 OUTCOME VARIABLE Y AT Tl (2 GROUPS)
by YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

YDICHT®6

Count
Row
0.00 1.00 Total

YDICHT1

0.00 80 17 97
66.0
1.00 18 32 50
34.0
Column 98 49 147
Total 66.7 33.3 100.0

in group 1 at t =6 (34.0%). Therefore, the McNemar test is useless in
this particular situation. However, just as an example, the result of the
McNemar test is presented in Output 6.2.

Output 6.2. Result of the McNemar test analysing the development over time
of a dichotomous outcome variable Y,,,, between t=1and t=6

McNemar Test
YDICHT1 OUTCOME VARIABLE Y AT T1 (2 GROUPS)
with YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

YDICHT®6
1.00 0.00 Cases 147
0.00 17 80 Chi-Square 0.0000
YDICHT1
1.00 32 18 Significance 1.0000

As expected, the McNemar test statistic chi-square = 0.0000 and the cor-
responding p-value is 1.0000, which indicates that there is no change over
time for outcome variable Y 4. Both outputs discussed so far illustrate per-
fectly the limitation of these two methods, i.e. only the difference between
the changes over time in opposite directions is taken into account.

From the 2 x 2 table, also the total ‘proportion of change’ and the corres-
ponding 95% confidence interval can be calculated. The ‘proportion of
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change’ is (18 4+ 17)/147 = 0.24. The standard error of this proportion,
which is calculated according to Equation (6.3), is 0.035. With these two
components the 95% confidence interval can be calculated, which leads to
an interval that ranges from 0.17 to 0.31, indicating a highly significant
change over time.

When the development over time of the outcome variable Y 4, is analysed
using all six measurements, the multivariate extension of the McNemar test
(Cochran’s Q) can be used. However, Cochran’s Q has the same limitations
as the McNemar test. So again it is useless in this particular situation, in
which the groups are defined according to the same (fixed) percentile at
each measurement. However, Output 6.3 shows the result of the Cochran’s
Q test. As expected, the significance level of Cochran’s Q (0.9945) is close
to one, indicating no difference between the changes over time in opposite
directions.

Output 6.3. Result of the Cochran’s Q test calculated for the longitudinal
development of the dichotomized outcome variable Y, from t=1to t=6,
using data from all repeated measurements

Cochran Q Test

Cases
=0.00 =1.00 Variable

97 50 YDICHTI1 OUTCOME VARIABLE Y AT T1 (2 GROUPS)
99 48 YDICHT2 OUTCOME VARIABLE Y AT T2 (2 GROUPS)
96 51 YDICHT3 OUTCOME VARIABLE Y AT T3 (2 GROUPS)
98 49 YDICHT4 OUTCOME VARIABLE Y AT T4 (2 GROUPS)
99 48 YDICHTS OUTCOME VARIABLE Y AT T5 (2 GROUPS)
98 49 YDICHT®6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

Cases Cochran Q DF Significance

147 0.4298 5 0.9945

To evaluate the total change over time, Equation (6.6) can be used. First of
all, the (T — 1) 2 x 2 tables must be constructed (Output 6.4). From these
tables, the total ‘proportion of change’ can be calculated.

The sum of the changes is 143, so the ‘proportion of change’ is 143/
(147 x 5) = 0.19. The corresponding 95% confidence interval (based on the
standard error calculated with Equation (6.3)) is [0.16 to 0.22], indicating
a highly significant change over time.
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Output 6.4. Five 2 x 2 tables used to calculate the ‘proportion of change’ when there
are more than two measurements

YDICHT2 YDICHT3
Count Count
Row Row
0.00 1.00 Total 0.00 1.00 Total
YDICHT1 YDICHT?2
0.00 83 14 97 0.00 83 16 99
1.00 16 34 50 1.00 13 35 48
Column 99 48 147 Column 96 51 147
YDICHT4 YDICHTS
Count Count
Row Row
0.00 1.00 Total 0.00 1.00 Total
YDICHT3 YDICHT4
0.00 84 12 96 0.00 86 12 98
1.00 14 37 51 1.00 13 36 49
Column 98 49 147 Column 99 48 147
YDICHT6
Count
Row
0.00 1.00 Total
YDICHTS
0.00 82 17 99
1.00 16 32 48
Column 98 49 147

6.1.4.3 Comparing groups
When the aim of the study is to investigate whether there is a difference in
development over time between several groups, the ‘proportion of change’
in the groups can be compared. In the example dataset the population can be
divided into two groups, according to the time-independent predictor vari-
able X4 (i.e. males and females). For both groupsa 2 x 2 table is constructed
(Output 6.5), indicating the changes betweent = 1 and t = 6 in Y gjq.

The next step is to calculate the ‘proportion of change’ for both groups.
For the group X4 = 1, Pchange = 13/69 = 0.19; while for the group X4 = 2,
Pchange = 0.28. From these two proportions the difference and the 95%
confidence interval can be calculated. The latter is based on the standard
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Output 6.5. 2 x 2 tables indicating the relationship between
the outcome variable Y, at t=1 and t= 6 for two groups
divided by X, (i.e. gender)

X4 equals 1
YDICHT1 OUTCOME VARIABLE Y AT Tl (2 GROUPS)
by YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)

YDICHT1
Count
Row
0.00 1.00 Total
YDICHT6
0.00 40 5 45
65.2
1.00 8 16 24
34.8
Column 48 21 69
Total 69.6 30.4 100.0
X4 equals 2
YDICHT1 OUTCOME VARIABLE Y AT Tl (2 GROUPS)
by YDICHT6 OUTCOME VARIABLE Y AT T6 (2 GROUPS)
YDICHT®6
Count
Row
0.00 1.00 Total
YDICHT1
0.00 40 12 52
66.7
1.00 10 16 26
33.3
Column 50 28 78
64.1 35.9 100.0

error calculated with Equation (6.5). The difference in ‘proportion of change’
between the two groups is 0.09, with a 95% confidence interval of [—0.05
to 0.23]. So, there is a difference between the two groups (i.e. females have a
9% greater change over time), but this difference is not statistically significant.

When there are more than two measurements, Equation (6.4) can be used
to calculate the ‘proportion of change’ in both groups. After creating (T — 1)
separate 2 x 2 tables, for group X4 = 1 this proportion equals 0.18, and for
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group X4 = 2, this proportion equals 0.21. The difference in ‘proportion of
change’ between the two groups (i.e. 0.03) can be tested for significance by
means of the 95% confidence interval. Based on the standard error, which is
calculated with Equation (6.5), this interval is [—0.03 to 0.09], so the (small)
difference observed between the two groups is not statistically significantly
different from zero.

6.2 Relationships with other variables

6.2.1 ‘Traditional’ methods

With the (simple) methods described in Section 6.1 it was possible to answer
the question of whether there is a change/development over time in a cer-
tain dichotomous outcome variable, and whether there is a difference in
change/development over time between two or more groups. Both questions
can also be answered by using more complicated methods, which must be
applied in any other situation than described above, for instance to answer
the question of whether there is a relationship between the development of
a dichotomous outcome variable Y i, and one or more predictor variables
X. In Section 4.2, it was discussed that for continuous outcome variables
‘traditional’ i.e. cross-sectional, methods are sometimes used to analyse these
longitudinal relationships. For dichotomous outcome variables, comparable
procedures are available. The most popular choice is the method illustrated
in Figure 4.2, i.e. ‘long-term exposure’ to certain predictor variables is related
to the dichotomous outcome variable at the end of the follow-up period. It
is obvious that this analysis can be performed with (simple) cross-sectional
logistic regression analysis.

6.2.2 Example

Output 6.6 presents the results of a logistic regression analysis, in which the
‘long-term exposures’ to the predictor variables X; to X, betweent = 1 and
t = 6 (using all available data) are related to the outcome variable Y 4;q, at
t=6.

From the significance levels it can be seen that long-term exposure’ to X,
is significantly associated with Y g, att = 6. The level of significance is based
on the Wald statistic, which is defined as the regression coefficient divided
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Output 6.6. Results of a logistic regression analysis relating ‘long-term
exposures' to predictor variables X, to X, between t=1 and t= 6 (using all
available data) to the dichotomous outcome variable Y, at t=6

B Std. error wWald df Sig
Constant -5.863 2.873 4.165 1 0.000
X1 1.438 1.120 1.648 1 0.199
AveragX2 0.861 0.205 17.680 1 0.000
AveragX3 -0.122 0.391 0.097 1 0.755
X4 -0.607 0.500 1.472 1 0.225

Dependent variable: DICHOTOMOUS OUTCOME VARIABLE YDICH AT T6

by its standard error, squared. The Wald statistic follows a x? distribution
with (in this case) one degree of freedom. The corresponding odds ratio
canbe calculated as exp(regression coefficient), which is equal to 2.36, and the
95% confidence interval can be calculated as exp(regression coefficient £ 1.96
times the standard error of the regression coefficient), which is [1.58 to 3.53].
The interpretation of the odds ratio is straightforward: a one point difference
in the ‘long-term exposure’ to X, between two subjects is associated with a
2.37 times higher odds of being in the upper tertile of the outcome variable
Y4ich at t = 6. It should be noted that a 2.37 times higher odds is usually
(loosely) interpreted as a 2.37 times greater ‘risk, which is comparable but
not the same.

6.2.3 Sophisticated methods
In general, when a dichotomous outcome variable is used in a longitudinal
study, and the objective of the study is to analyse the relationship between
the development of such a variable and the development of one or more pre-
dictor variables, it is possible to use the sophisticated methods mentioned
before (i.e. GEE analysis and random coefficient analysis). In Chapter 4, it
was extensively explained that for continuous outcome variables in longit-
udinal studies the sophisticated techniques can be considered as ‘longitudinal
linear regression analysis’ Analogous to this, GEE analysis and random coeffi-
cient analysis of a dichotomous outcome variable in longitudinal studies can
be considered as ‘longitudinal logistic regression analysis. So, comparable
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to Equation (4.3), the longitudinal logistic model can be formulated as in
Equation (6.6).

Pr(Yu=1) \_ i K
n (m) = po+ ;,311' + Bt + kXZI:/%kZM

M
+ Z BimGim (6.6a)
m=1
In a different notation:
Pr(Yit = 1)
_ 1
J K M
1+ exp |:— (,30 + Zﬂuxitj + Bt + Z,Bskzikt + Z ,84mGim>j|
=1 k=1 m=1
(6.6b)

where Pr(Yj; = 1) is the probability that the observations att; to tr of subjecti
equal 1 (where T is the the number of measurements and 1 means that subject
i belongs to the group of interest), By is the intercept, Xij; is the independent
variable j of subjecti at timet, B;; is the regression coefficient of independ-
ent variable J, J is the number of independent variables, t is time, 8, is the
regression coefficient of time, Zjy is the time-dependent covariate k of sub-
jecti attimet, B3y is the regression coefficient of time-dependent covariatek,
K is the number of time-dependent covariates, Gin, is the time-independent
covariate m of subject i, Ban is the regression coefficient of time-independent
covariate M, and M is the number of time-independent covariates.
Although the model looks quite complicated, it is in fact nothing more
than an extension of the (simple) logistic regression model. The extension
is presented in the subscript t, which indicates that the same individuals
can be repeatedly measured over time. In this model the probability of
belonging to a group (coded 1) from t; to tt (Yj;) is related to several pre-
dictor variables ( Xjj;), several time-dependent covariates (Zjy), several time-
independent covariates (Gjy) and time (t). Like in (simple) multiple logistic
regression analysis, all predictor variables and covariates can be continuous,
dichotomous or categorical, although in the latter situation dummy coding
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can or must be used. The coefficient of interest is 81, because this coefficient
reflects the relationship between the development of a certain predictor vari-
able (Xj{) and belonging to the group of interest from t; to tr. Like in simple
logistic regression, this coefficient (8;) can be transformed into an odds ratio
(exp(B1)). The interpretation of the regression coefficients (i.e. odds ratios)
is equivalent to the ‘combined’ interpretation of the regression coefficients
for continuous outcome variables (see the example in Section 6.2.4 for a
detailed explanation).

Analogous to the situation with continuous outcome variables, with GEE
analysis a correction is made for the within-subject correlations between the
repeated measurements by assuming a ‘working correlation structure’, while
with random coefficient analysis this correction is made by allowing different
regression coefficients to be random.

6.2.4 Example
6.2.4.1 Generalized estimating equations

For dichotomous outcome variables, the GEE approach also requires the
choice of a ‘working correlation structure’. Although there are the same
possibilities as have been discussed for continuous outcome variables (see
Section 4.5.2), it is not possible to use the correlation structure of the ob-
served data as a guide for the choice of ‘working correlation structure’. In this
example, an exchangeable correlation structure (which is the default option
in many software packages) will be used.

Output 6.7 presents the result of the logistic GEE analysis in which Y g,
is related to the four predictor variables (X; to X4), and time.

The output of the so-called binomial generalized estimating equations is
comparable to the output of a linear GEE analysis, which was discussed in
Section 4.5.4.2. The outcome variable is YDICH, which is the dichotomized
version of the outcome variable Y, and the correlation structure used is
‘exchangeable’. The second part of the output consists of the parameter
estimates. For each of the predictor variables the magnitude of the regres-
sion coefficients, the standard error and the corresponding p-values are
presented. In addition, for the logistic GEE analysis, the odds ratio and the
corresponding 95% confidence intervals are also shown. With regard to the
four predictor variables, only X, is significantly related to the development of



132

Dichotomous outcome variables

Output 6.7. Results of the logistic GEE analysis performed on the example
dataset

Binomial Generalized Estimating Equations
Response: YDICH Corr: Exchangeable

Column Name Coeff StErr p-value 0Odds 95% CI
0 Constant -2.270 1.916 0.236
2 TIME -0.077 0.037 0.039 0.926 0.861 0.996
4 X1 0.222 0.757 0.770 1.248 0.283 5.507
5 X2 0.340 0.063 0.000 1.404 1.242 1.588
6 X3 -0.151 0.198 0.446 0.860 0.583 1.267
7 X4 0.084 0.374 0.822 1.088 0.523 2.264

n:147 s:0.982 #iter:13
Estimate of common correlation 0.488

the dichotomous outcome variable Ygic,. The regression coefficient is 0.340,
and the odds ratio is 1.404. The 95% confidence interval ranges from 1.242
to 1.588. The interpretation of this odds ratio is somewhat complicated. As
for the regression coefficients calculated for a continuous outcome variable,
the odds ratios can be interpreted in two ways. (1) The ‘cross-sectional’ or
‘between-subjects’ interpretation: a subject with a one-unit higher score for
predictor variable X,, compared to another subject, has a 1.404 times higher
odds of being in the highest group for the dichotomous outcome variable
Yiich- (2) The ‘longitudinal’ or ‘within-subject’ interpretation: an increase of
one unit in predictor variable X, within a subject over a certain time period
is associated with a 1.404 times higher odds of moving to the highest group of
the dichotomous outcome variable Y4, compared to the situation in which
no change occurs in predictor variable X,. The magnitude of the regression
coefficient (i.e. the magnitude of the odds ratio) reflects both relationships,
and itis not clear from the results of this analysis which is the most important
component of the relationship. In Section 6.2.6 an alternative model (i.e. an
autoregressive model) will be presented, in which the ‘longitudinal’ part of
the relationship can be more or less disconnected from the ‘cross-sectional’
part.

The last part of the output shows some additional information provided
by the logistic GEE analysis: the number of subjects used in the analysis
(n = 147), the scale parameter (S = 0.982), the number of iterations needed
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to create the result (#iter:13), and the estimate of common correlation
(0.488). Because an exchangeable correlation structure was chosen, only one
correlation coefficient is estimated.

As in the GEE analysis with a continuous outcome variable, the scale pa-
rameter (also known as dispersion parameter) is an indication of the variance
of the model. The interpretation of this coefficient is, however, different to
that in the situation with a continuous outcome variable. This has to do with
the characteristics of the binomial distribution on which the logistic GEE
analysis is based. In the binomial distribution the variance is directly linked
to the mean value (Equation (6.7)).

var(p) = p(1—p) (6.7)

where var is the variance, and p is the the average probability.

So, for the logistic GEE analysis, the scale parameter has to be one (i.e. a
direct connection between the variance and the mean). From Output 6.7,
however, it can be seen that the scale parameter was slightly lower than one.
It should be noted that in some software packages the scale parameter for
the logistic GEE analysis is set at a fixed value of one (see Chapter 12).

It is somewhat surprising that time is significantly related to the devel-
opment of outcome variable Ygi, (odds ratio of 0.926), because Ygic is
based on fixed cut-off points (i.e. tertiles), and there is only a small change
(maximal 1%) over time. The reason for this negative relationship with time
is the fact that multiple analysis is applied, i.e. a ‘correction’ is made for the
four predictor variables. When a univariate GEE analysis is carried out, with
only time as a predictor variable, the relationship is, as expected, far from
significant (see Output 6.8).

Output 6.8. Results of the GEE analysis with only time as a predictor variable

Binomial Generalized Estimating Equations
Response: YDICH Corr: Exchangeable

Column Name Coeff StErr p-value Odds 95% CI
0 Constant -0.667 0.175 0.000
2 TIME -0.006 0.031 0.844 0.994 0.935 1.056

n:147 s:1.001 #iter:9
Estimate of common correlation 0.513
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Output 6.9. Results of the GEE analyses with an independent (A), a
5-dependent (B), and an unstructured correlation structure (C)

(A)Binomial Generalized Estimating Equations
Response: YDICH

Column

Name

Constant

TIME

X1
X2
X3
X4

Odds

(B)Binomial Generalized Estimating Equations
Response: YDICH

Column

Name

Constant

TIME

X1
X2
X3
X4

Corr: Independence
Coeff StErr p-value
-3.261 1.992 0.102
-0.106 0.041 0.009
0.557 0.784 0.478
0.467 0.090 0.000
-0.125 0.248 0.614
0.046 0.395 0.908
#iter:12

Corr:

Coeff

StErr

5-Dependence

p-value

n:147

s:0.98

#iter:13
Estimate of common correlations 0.549,

0.517,

(C)Binomial Generalized Estimating Equations

Corr: Unspecified

StErr

p-value

0.453,

0.486,

0.

395

.616
.552

000

.559

Response: YDICH
Column Name Coeff
0 Constant -2.194
2 TIME -0.077
4 X1 0.225
5 X2 0.321
6 X3 -0.110
7 X4 0.082
n:147 s:0.978 #iter:13
Estimate of common correlation
1.000 0.565 0.466
0.565 1.000 0.536
0.466 0.536 1.000
0.395 0.616 0.552
0.491 0.532 0.553
0.446 0.445 0.392

0
0
1.
0
0

.375

o B O O O O

.491
.532
.553
.559
.000
.462

P O O O O O

.446
.445
.392
.375
.462
.000
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Table 6.1. Results of the GEE analysis with different correlation structures

Correlation structure

Independent Exchangeable 5-Dependent Unstructured
X, 0.56 (0.78) 0.22 (0.76) 0.23 (0.76) 0.23 (0.76)
X, 0.47 (0.09) 0.34 (0.06) 0.33 (0.06) 0.32 (0.06)
X5 —0.13 (0.25) —0.15 (0.20) —0.13 (0.19) —0.11 (0.19)
X, 0.05 (0.40) 0.08 (0.37) 0.08 (0.37) 0.08 (0.37)
Time —0.11 (0.04) —0.08 (0.04) —0.07 (0.04) —0.08 (0.04)

The results presented in Output 6.8 also indicate that a GEE analysis re-
garding the longitudinal relationship with time has the same disadvantages as
have been mentioned for the McNemar test and Cochran’s Q. So, on average
there is no change over time in the dichotomous outcome variable Y gic.

Comparable to the situation already described for continuous outcome
variables, GEE analysis requires the choice of a particular ‘working correla-
tion structure’. It has already been mentioned that for a dichotomous out-
come variable it is not possible to base that choice on the correlation structure
of the observed data. It is therefore interesting to investigate the difference
in regression coefficients estimated when different correlation structures
are chosen. Output 6.9 shows the results of several analyses with different
correlation structures and Table 6.1 summarizes the results of the different
GEE analyses.

The most important conclusion which can be drawn from Table 6.1 is that
the results of the GEE analysis with different correlation structures are highly
comparable. This finding is different from that observed in the analysis of a
continuous outcome variable (see Table 4.2), for which a remarkable differ-
ence was found between the results of the analysis with different correlation
structures. So, (probably) the statement in the literature that GEE analysis
is robust against the wrong choice of a correlation structure is particularly
true for dichotomous outcome variables (see for instance also Liang and
Zeger, 1993).

Furthermore, from Table 6.1 it can be seen that there are remarkable dif-
ferences between the results obtained from the analysis with an independent
correlation structure and the results obtained from the analysis with the
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three dependent correlation structures. It should further be noted that the
standard errors obtained from the analysis with an independent correla-
tion structure are higher than those obtained from the analysis with a de-
pendent correlation structure. This ‘over-estimation’ is irrespective of the
nature of the particular predictor variable. Although the over-estimation
is more pronounced for the time-dependent predictor variables, it should
be noted that this differs from the situation with a continuous outcome
variable.

To put the results of the GEE analysis in a somewhat broader perspective,
they can be compared with the results of a ‘naive’ logistic regression analysis,
in which the dependency of observations is ignored. Output 6.10 presents
the results of such a ‘naive’ logistic regression analysis.

Output 6.10. Results of a “naive’ logistic regression analysis performed on the
example dataset, ignoring the dependency of the observations

Logistic Regression Analysis
Response: YDICH

Column Name Coeff StErr p-value Odds 95% CI
0 Constant -3.261 1.077 0.002
2 TIME -0.106 0.047 0.024 0.899 0.820 0.986
4 X1 0.557 0.434 0.199 1.745 0.746 4.083
5 X2 0.467 0.061 0.000 1.595 1.415 1.798
6 X3 -0.125 0.209 0.550 0.882 0.585 1.330
7 X4 0.046 0.191 0.811 1.047 0.719 1.523

df:876 Dev:1044.508 %(0):66.553 #iter:11 RSqg: 0.071

The comparison between the results of the ‘naive’ logistic regression and
the results of the GEE analysis with an independent correlation structure
is different to what has been observed for continuous outcome variables.
The regression coefficients are exactly the same as the regression coefficients
obtained from a GEE analysis, while the standard errors obtained from the
GEE analysis are higher than those calculated with the ‘naive’ logistic regres-
sion analysis, irrespective of the nature of the predictor variables. The only
exception, however, is the standard error of time.
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6.2.4.2 Random coefficient analysis

Comparable to the situation with continuous outcome variables, in the case of
dichotomous outcome variables it is also possible to analyse the relationship
with several predictor variables by means of random coefficient analysis. The
first step is to perform an analysis with only a random intercept. Output 6.11
shows the result of this analysis.

Output 6.11. Results of a random coefficient analysis with only a random intercept

Random-effects logit Number of obs = 882

Group variable (i) : id Number of groups = 147

Random effects u i ~ Gaussian Obs per group: min = 6

avg = 6.0

max = 6

Wald chi2 (5) = 30.39

Log likelihood = -400.59729 Prob > chi2 = 0.0000
ydich Coeff Std. Err. z P > |z| [95% Conf. Intervall

x1 0.8828525 1.81259 0.487 0.626 -2.669758 4.435463

x2 0.6991612 0.1442835 4.846 0.000 0.4163708 0.9819517

x3 -0.2489498 0.3615913 -0.688 0.491 -0.9576558 0.4597561

x4 0.3350076 0.713474 0.470 0.639 -1.063376 1.733391

time -0.1552925 0.0718681 -2.161 0.031 -0.2961514 -0.0144335

cons -5.772749 4.327476 -1.334 0.182 -14.25445 2.708948

/1lnsig2u 1.813016 0.193079 9.390 0.000 1.434588 2.191444

sigma u 2.475662 0.2389992 2.048882 2.991341

rho 0.859726 0.0232848 0.8076152 0.8994785
Likelihood ratio test of rho=0: chi2 (1) = 243.31 Prob > chi2 = 0.0000

The output of a random coefficient analysis with a dichotomous outcome
variable is comparable to the output observed for a continuous outcome
variable.

The first part provides some general information about the model. It shows
that a logistic random coefficient analysis was performed (random-effects
logit) and that the random coefficients are normally distributed (random
effects u_i ~ Gaussian). Furthermore, the log likelihood of the model and
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the result of a Wald test (Wald chi2(5) = 30.39), and the corresponding
p-value (prob > chi2 = 0.000) are presented. This Wald test is a generalized
Wald test for all predictor variables. Because X, X,, X3, X4 and time are
analysed in the model, the generalized Wald statistic follows a x ? distribution
with five degrees of freedom, which is highly significant.

The second part of the output shows the most important information
obtained from the analysis, i.e. the (fixed) regression coefficients. This in-
formation is exactly the same as has been discussed for continuous out-
come variables, although the regression coefficients can be transformed into
odds ratios by taking exp(coef). Again the interpretation of the coefficients
is the same as has been discussed for the GEE analysis with dichotomous
outcome variables, i.e. a combined ‘between-subjects’ (cross-sectional) and
‘within-subject’ (longitudinal) interpretation. For instance, for predictor
variable X, the ‘between-subjects’ interpretation is that a subject with a
one-unit higher score for predictor variable X,, compared to another sub-
ject, has an exp(0.699) = 2.01 times higher odds of being in the highest
group for the dichotomous outcome variable Y g;c,. The ‘within-subject’ in-
terpretation is that an increase of one unit in predictor variable X, within
a subject (over a certain time period) is associated with a 2.01 times higher
odds of moving to the highest group of the dichotomous outcome variable
Yich» compared to the situation in which no change occurs in predictor
variable X,.

The last part of the output shows information about the random part of
the analysis. The variance of the (normally distributed) random intercepts is
denoted as sigma_u, and rho is an estimate of the within-subject correlation.
Although it is of little interest, the output of the random coefficient analysis
also shows the natural log of sigma_u (Insig2u).

The likelihood ratio test of rho = 0 provides information on the import-
ance of allowing a random intercept. The result of the likelihood ratio test
presented here is based on the comparison between this model and a sim-
ilar model without a random intercept. Apparently, this difference is 243.31,
which follows a x 2 distribution with one degree of freedom (i.e. the random
intercept), and which is highly significant. In other words, the results of the
likelihood ratio test suggest that it is necessary to allow a random intercept
in this particular situation.
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To verify the results of the likelihood ratio test, Output 6.12 presents the
results of an analysis with no random intercept.

Output 6.12. Results of a random coefficient analysis with no random intercept

Logit estimates Number of obs = 882

LR chi2(5) = 79.68

Prob > chi2 = 0.0000

Log likelihood = -522.25411 Pseudo R2 = 0.0709
ydich 0dds Ratio std. Err. z P > |z| [95% Conf. Interval]
x1 1.745148 0.7570111 1.284 0.199 0.7457575 4.083823
x2 1.594749 0.0974273 7.639 0.000 1.414784 1.797606
%3 0.8824154 0.1847934 -0.597 0.550 0.585351 1.330239
x4 1.04677 0.2004081 0.239 0.811 0.7192596 1.523411

time 0.8990267 0.0423753 -2.258 0.024 0.8196936 0.9860379

For this particular purpose, the only important information is the log
likelihood of the model analysed (—522.25411). The difference between this
value and the log likelihood of a model with a random interceptis 121.65682.
The difference between the —2 log likelihoods is therefore 243.31, i.e. exactly
the same as has been seen in Output 6.11.

So, from comparison of the —2 log likelihoods of the two models it can
be concluded that allowing a random intercept is important. The next step
is to evaluate the necessity of a random slope with time. Therefore a random
coefficient analysis is performed, with both a random intercept and arandom
slope with time (Output 6.13).

To evaluate the necessity of a random slope with time, the log likelihood
of the model presented in Output 6.13 (—397.84608) is compared to the
log likelihood of the model with only a random intercept (—400.59729,
Output 6.11). The difference between the two values is 2.75121. Two times
this difference follows a x * distribution with two degrees of freedom (i.e. the
random slope and the covariance/correlation between the random slope and
the random intercept), which gives a p-value of 0.064. This is not significant,
so following the basic rule of significance, allowing a random slope with
time is not really necessary. However, although the corresponding p-value
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is not significant, the difference in —2 log likelihood is substantial, so in this
situation it is recommended to use a model with both a random intercept
and a random slope with time.

Output 6.13. Results of a random coefficient analysis with a random intercept and a

random slo

pe with time

log likelihood = -397.84608

Coeff std. Err. z P > |z| [95% Conf. Intervall
.3276885 1.633606 0.201 0.841 -2.874121 3.529498
.7158125 0.1373508 5.212 0.000 0.4466099 0.9850152
.22697 0.3574447 -0.635 0.525 -0.9275488 0.4736088
.4606241 0.6981993 0.660 0.509 -0.9078214 1.82907
.0685773 0.0952798 -0.720 0.472 -0.2553222 0.1181676
.304992 3.890947 -1.363 0.173 -12.93111 2.321123

ydich
x1 0
x2 0
x3 -0
x4 0
time -0
cons -5
Variances

***level 2 (id)

var (1) :
cov(l,2):
var (2) :

13.116573 (4.3382583)
-1.0355152 (0.61205904) cor(l,2): -0.8643663
0.10942006 (0.09086733)

6.2.5 Comparison between GEE analysis and random coefficient analysis

For continuous outcome variables it was seen that GEE analysis and random
coefficientanalysis provided almost identical results in the analysis of alongit-
udinal dataset. For dichotomous outcome variables, however, the situation
is more complex. In Table 6.2 the results of the GEE analysis and the random
coefficient analysis with a dichotomous outcome variable are summarized.

From Table 6.2 it can be concluded that there are remarkable differences
between the results of the GEE analysis and the results of the random co-
efficient analysis. All regression coefficients and standard errors obtained
from GEE analysis are much lower than those obtained from random coeffi-
cient analysis (except the regression coefficient for time when both a random
intercept and a random slope with time are considered).

In this respect, it is important to realize that the regression coefficients
calculated with GEE analysis are ‘population averaged,, i.e. the average of
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Table 6.2. Regression coefficients and standard errors (in parentheses) of
longitudinal regression analyses with a dichotomous outcome variable; a
comparison between GEE analysis and random coefficient analysis

Random coefficient Random coefficient
GEE analysis® analysis® analysis®
X4 0.22 (0.76) 0.88 (1.81) 0.33 (1.63)
X, 0.34 (0.06) 0.70 (0.14) 0.72 (0.14)
X3 —0.15 (0.20) —0.25(0.36) —0.23 (0.36)
X4 0.08 (0.37) 0.34 (0.71) 0.46 (0.70)
Time —0.08 (0.04) —0.16 (0.07) —0.07 (0.10)

® GEE analysis with an exchangeable correlation structure.
b Random coefficient analysis with only a random intercept.
¢ Random coefficient analysis with a random intercept and a random slope with time.

the individual regression lines. The regression coefficients calculated with
random coefficient analysis can be seen as ‘subject specific’ In Figure 6.1,
this difference is illustrated for both the linear model (i.e. with a continuous
outcome variable) and the logistic model (i.e. with a dichotomous outcome
variable) with only a random intercept. For the linear longitudinal regres-
sion analysis, both GEE analysis and random coefficient analysis produce
exactly the same results, i.e. the ‘population-average’ is equal to the ‘subject-
specific’ (see also Section 4.7). For the logistic longitudinal regression ana-
lysis, however, the two approaches produce different results. This has to do
with the fact that in logistic regression analysis the intercept has a different
interpretation than in linear regression analysis. From Figure 6.1 it can be
seen that the regression coefficients calculated with a logistic GEE analysis
will always be lower than the coefficients calculated with a logistic random
coefficient analysis (see for instance also Neuhaus et al., 1991; Hu et al,,
1998). It should further be noted that when a random coefficient analysis
is performed with time as the only predictor variable, no significant change
over time is detected in outcome variable Yg4;q, (results not shown in de-
tail). In other words, despite the fact that random coefficient analysis is a
‘subject-specific’ approach, the analysis of the development of a dichoto-
mous outcome variable over time has the same disadvantages as has been
mentioned for GEE analysis.
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GEE analysis Random coefficient analysis

arbitrary arbitrary
value . value

arbitrary arbitrary
value value

Individuals = = = = = =« Individuals = = = m= = = =

‘population-average’ ‘subject-specific’

Figure 6.1. lllustration of the ‘population average’ approach of GEE analysis and the ‘subject

specific’ approach of random coefficient analysis, illustrating both the situation
with a continuous outcome variable (upper graphs) and the situation with a
dichotomous outcome variable (lower graphs).

Because of the remarkable differences, the question then arises: ‘When a
dichotomous outcome variable is analysed in a longitudinal study, should
GEE analysis or random coefficient analysis be used?’ If one is performing a
population study and one is interested in the relationship between a dichoto-
mous outcome variable and several other predictor variables, GEE analysis
will probably provide the most ‘valid’ results. However, if one is interested in
the individual development over time of a dichotomous outcome variable,
random coefficient analysis will probably provide the most ‘valid’ results.
It should, however, also be noted that random coefficient analyses with a
dichotomous outcome variable have not yet been fully developed. Differ-
ent software packages give different results, and within one software package
there is (usually) more than one algorithm to estimate the coefficients. Unfor-
tunately, these different estimation procedures often lead to different results
(see also Chapter 12). In other words, although in theory random coefficient
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(1)

|

(3)

(4)
(2)

Figure 6.2. Changes in a dichotomous variable between two time-points lead to a categorical

variable with four groups.

analysis is highly suitable in some situations, in practice one should be very
careful in using this technique in the longitudinal analysis of a dichotomous
outcome variable.

6.2.6 Alternative models

In Chapter 5 several alternative methods were introduced to analyse longit-
udinal relationships for continuous outcome variables (i.e. a time-lag model,
the modelling of changes, and an autoregressive model). In principle, all
the alternative models discussed for continuous outcome variables can also
be used for the analysis of dichotomous outcome variables. The time-lag
model can be used when one is interested in the analysis of possible causa-
tion, while an autoregressive model can be used when one is interested in
the analysis of the ‘longitudinal’ part of the relationship. However, a prob-
lem arises in the modelling of changes between subsequent measurements.
This has to do with the fact that changes in a dichotomous outcome variable
result in a categorical variable with four groups (i.e. subjects who stay in one
group, subjects who stay in another group and two groups in which subjects
move from one group to another (see Figure 6.2)), and with the fact that the
longitudinal analysis of categorical outcome variables is rather complicated
(see Chapter 7).

This chapter does not include a very detailed discussion of the results
of alternative models to analyse dichotomous outcome variables, because
this was already done in Chapter 5 with regard to continuous outcome
variables. Basically, the same problems and advantages apply to dichotomous
outcome variables. It is important to realize that the three models represent
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different aspects of the longitudinal relationships between a dichotomous
outcome variable and several predictor variables, and that therefore the
regression coefficients obtained from the different models should be in-
terpreted differently.

6.2.7 Comments

In this chapter, the longitudinal analysis of a dichotomous outcome variable
is explained in a rather simple way. It should be realized that the technical
details of these analyses are very complicated. For these technical details ref-
erence should be made to other publications (with regard to GEE analysis
for instance Liang and Zeger, 1986; Prentice, 1988; Lipsitz et al., 1991; Carey
et al., 1993; Diggle et al., 1994; Lipsitz et al., 1994b; Wiliamson et al., 1995;
Lipsitz and Fitzmaurice, 1996; and with regard to random coefficient ana-
lysis for instance Conway, 1990; Goldstein, 1995; Rodriguez and Goldman,
1995; Goldstein and Rasbash, 1996; Gibbons and Hedeker, 1997; Barbosa
and Goldstein, 2000; Yang and Goldstein, 2000; Rodriguez and Goldman,
2001).
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7.1 Categorical outcome variables

7.1.1 Two measurements

145

Longitudinal analysis with a categorical outcome variable is more problem-
atic than the longitudinal analysis of continuous or dichotomous outcome
variables. Until recently only simple methods were available to analyse such
outcome variables. Therefore, categorical variables are sometimes treated as
continuous, especially when they are ordinal and have a sufficient number
(usually five or more) of categories. Another method is to reduce the cate-
gorical outcome variable into a dichotomous one by combining two or more
categories. However, this results in a loss of information, and is only recom-
mended when there are only a few subjects in one or more categories of the
categorical variable.

The simplest form of longitudinal study with a categorical outcome
variable is one where the categorical outcome variable is measured twice
in time. This situation (when the categorical variable consists of three groups)
is illustrated in the 3 x 3 table presented below (where n stands for
number of subjects and p stands for proportion of the total number of sub-
jects N).

t

1 2 3 Total

o1 N1 (Pi1) Ni2(P12) ni3(P1s) Nien (Piceny)
2 N21(P21) N2 (P22) Ni3(P13) Nty (P2ctn))
3 N31(P31) N32(P32) N33(P33) N3t (P3en))
Total  niay(Piez) Mz (Pat))  Naan(P3az)  N(1)
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To determine whether there is a development or change over time in the
categorical outcome variable Y., an extension of the McNemar test (which
hasbeen discussed for dichotomous outcome variables, see Section 6.1.1) can
be used. This extension is known as the Stuart—-Maxwell statistic, and is only
suitable for outcome variables with three categories. The Stuart—-Maxwell
statistic follows a x? distribution with one degree of freedom, and is defined
as shown in Equation (7.1).

= Nydf 4+ Nsd; 4 Npd3 (7.12)
2N N3 + Ny M3 + N3 Nos)
Nj; + Nj;
m=——"20" (7.1b)
2
di = Ny — Nip (7.1¢)

where njj is the number of subjects in group i at t = 1 and in group j at
t = 2, and nj; is the number of subjects in group jatt = 1 and in group i at
t=2.

Just as the McNemar test, the Stuart—Maxwell statistic gives an indication
of the differences between the changes over time in opposite directions,
while the main interest is usually the total change over time. Therefore,
the ‘proportion of change’ can be calculated. This ‘proportion of change’
is a summation of all the off-diagonal proportions of the categorical 3 x 3
table, whichisequalto 1 — (py; + P22 + P33)- Around this proportion a 95%
confidence interval can be calculated in the usual way (for calculation of the
standard error of the ‘proportion of change’, Equation (6.3) can be used). In
addition to giving an indication of the precision of the ‘proportion of change’,
this 95% confidence interval provides an answer to the question of whether
there is a significant change over time. As for the dichotomous outcome
variables, this procedure can be carried out for the proportion of subjects
that ‘increases’ over time or the proportion of subjects that ‘decreases’” over
time. It is obvious that the calculation of the ‘proportion of change’ is not
limited to categorical variables with only three measurements.

7.1.2 More than two measurements

When there are more than two measurements in a longitudinal study, the
same procedure can be followed as has been described for dichotomous
outcome variables, i.e. the ‘proportion of change’ can be used as a measure
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of total change over time. Todo so, (T — 1) x ¢ tables! must be constructed
(fort =1andt =2, fort = 2andt = 3, and so on), then for each table the
‘proportion of change’ can be calculated. To obtain the total ‘proportion of
change’, Equation (7.2) can be applied:

] N
p= m;ﬁ (7.2)

where p is the overall ‘proportion of change, N is the number of subjects,
T is the number of measurements, and C; is the number of changes for
individual i.

7.1.3 Comparing groups

In research situations in which the longitudinal development over time
between several groups must be compared, the simple methods discussed
for dichotomous outcome variables can also be used for categorical out-
come variables, i.e. comparing the ‘proportion of change’ between different
groups, or comparing the ‘proportion of change’ in a certain direction be-
tween different groups. When there are only two groups to compare, a 95%
confidence interval can be constructed around the difference in proportions,
so that this difference can be tested for significance. This should be done in ex-
actly the same way as has been described for dichotomous outcome variables
(see Section 6.1.3).

7.1.4 Example

For the example, the original continuous outcome variable Y of the example
dataset was divided into three equal groups, according to the 33rd and the
66th percentile, in order to create Y. This was done at each of the six meas-
urements (see also Section 1.4). Most of the statistical methods are suitable
for situations in which there are only two measurements, and therefore the
development between the first and the last repeated measurement (between
t =1 and t = 6) for the categorical outcome variable Y, will be consid-
ered first. In Output 7.1 the 3 x 3 table for Y s att = 1 and Y att = 6 is
presented. From Output 7.1 the Stuart—-Maxwell statistic and the ‘propor-
tion of change’ can be calculated. Unfortunately, the two indicators are not

1'r x ¢ stands for row x column, and indicates that all types of categorical variables can be analysed in
this way.
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Output 7.1. 3 x 3 table for the relationship between
outcome variable Y, att=1and Y, att=6

YCATT6

Count
Row
1 2 3 Total

YCATT1

1 30 15 3 48
32.7
2 16 19 14 49
33.3
3 3 15 32 50
34.0
Column 49 49 49 147

Total 33.3 33.3 33.3 100.0

Table 7.1. Two indicators for a change over time (between t = 1 and
t = 6) for outcome variable Y,

Stuart-Maxwell statistic X2 =0.09 p =0.76
‘proportion of change’ 0.45 95% confidence interval 0.37-0.53

available in standard software packages, so they must be calculated manually.
Table 7.1 shows the values of both indicators for a change over time.

With the Stuart—Maxwell statistic, the difference between the changes over
time in opposite directions is tested for significance. Because the categoriza-
tion of the outcome variable Y, was based on tertiles (i.e. fixed values), it is
obvious that the Stuart-Maxwell statistic will be very low (x? = 0.09), and
far from significant (p = 0.76). The ‘proportion of change’ is an indicator
of the total change over time. The result indicates a ‘moderate’ and highly
significant individual change over time.

When all the measurements are included in the analysis, the only possible
way to investigate the individual change over time in a categorical outcome
variable is to calculate the overall ‘proportion of change’ To do so, all five
3 x 3 tables must be constructed. They are shown in Output 7.2. From
the five 3 x 3 tables the total ‘proportion of change’ can be calculated (with
Equation (7.2)). This proportion is equal to 0.35. The corresponding
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Output 7.2. Five 3 x 3 tables to analyse the change over time in the outcome
variable Y, between t=1and t=6

YCATT2 YCATT3
Count Count
1 2 3 1 2 3
YCATT1 YCATT2
1 35 11 2 34 11 1
29 12 2 18 20 15
3 13 34 2 11 35
YCATT4 YCATTS
Count Count
1 2 3 1 2 3
YCATT3 YCATT4
45 9 1 36 16
7 23 12 10 24 12
14 37 3 3 10 36
YCATT6
Count
YCATTS 1 2 3
35 13
12 22 16
3 2 14 32

95% confidence interval (based on the standard error calculated with
Equation (6.3)) is equal to [0.32 to 0.38], i.e. a highly significant change
over time.

It is also possible to compare the development over time for outcome
variable Y, between two or more groups. In the example, the development of
Y .at Wwas compared between the two categories of time-independent predictor
variable X, (i.e. gender). Output 7.3 shows the two 3 x 3 tables. For both
groups the ‘proportion of change’ is exactly the same, i.e. 0.45. Around this
(no) difference a 95% confidence interval can be constructed: [—0.16 to
0.16]. The width of the confidence interval provides information about the
precision of the calculated difference between the two groups.

To obtain an estimation of the possible differences in development over
time for the two groups by using all six measurements, the overall ‘proportion
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Output 7.3. 3 x 3 tables for the relationship between outcome
variable Y, at t, and Y, at t, for the group in which X, equals 1
and for the group in which X, equals 2

X4 equals 1
YCATT1 OUTCOME VARIABLE Y AT T1 (3 GROUPS)
by YCATT6 OUTCOME VARIABLE Y AT T6 (3 GROUPS)

YCATT6
Count
Row
1 2 3 Total
YCATT1
1 14 7 21
30.4
2 11 8 5 24
34.8
3 3 5 16 24
34.8
Column 28 20 21 69
Total 40.6 29.0 30.4 100.0
X4 equals 2
YCATT1 OUTCOME VARIABLE Y AT T1 (3 GROUPS)
by YCATT6 OUTCOME VARIABLE Y AT T6 (3 GROUPS)
YCATT6
Count
Row
1 2 3 Total
YCATT1
1 16 8 3 27
34.6
2 5 11 9 25
32.1
3 10 16 26
32.3
Column 21 29 28 78
Total 26.9 37.2 35.9 100.0

of change’ must be calculated for both groups. When this is done (by creating
(T — 1), 3 x 3 tables for both groups), the overall ‘proportion of change’
for the group X4 equals 1 is 0.47, while for group X4 equals 2, the overall
proportion of change is 0.44. Around this difference of 3% a 95% confidence
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interval can be calculated. To obtain a standard error for this difference,
Equation (6.5) can be applied to these data, which results in a confidence
interval of [—0.05 to 0.11], i.e. no significant difference between the two
groups.

7.1.5 Relationships with other variables
7.1.5.1 ‘Traditional’ methods

With the (simple) methods described in the foregoing sections, it was pos-
sible to answer the question of whether there is a change/development over
time in a certain categorical outcome variable and/or the question of whether
there is a difference in change/development between two or more groups.
Both questions can also be answered by using more complicated methods,
which must be applied in any situation other than that described above: for
instance, to answer the question of whether there is a relationship between
the development of a categorical outcome variable Y, and one or more pre-
dictor variables X. For categorical outcome variables, a comparable ‘cross-
sectional’ procedure is available, as has already been described for continuous
and dichotomous outcome variables, i.e. long-term exposure’ to certain pre-
dictor variables is related to the categorical outcome variable at the end of
the follow-up period (see Figure 4.2). This analysis can be performed with
polytomous logistic regression analysis, which is also known as multinomial
logistic regression analysis, and is the categorical extension of logistic regres-
sion analysis.

7.1.5.2 Example

Output 7.4 presents the results of the polytomous logistic regression analysis,
in which ‘long-term exposures’ to the predictor variables X; to X4 between
t =1 and t = 6 (using all available data) were related to the categorical
outcome variable Y, att = 6.

With polytomous logistic regression analysis, basically two logistic re-
gression analyses are combined into one analysis, although the procedure
is slightly different from performing two separate independent logistic
regression analyses. In the polytomous logistic regression analysis, the upper
tertile of the outcome variable Y, is used as a reference category. The in-
terpretation of the regression coefficients is exactly the same as for (simple)
logistic regression analysis. From Output 7.4 it can be seen that, for instance,
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Output 7.4. Results of a polytomous logistic regression analysis relating ‘long-term
exposures’ to predictor variables X; to X, between t=1 and t= 6 (using all available
data) to the categorical outcome variable Y_,, at t=6

B Std. error Wald daf Sig
1 Constant 6.416 2.959 702 1 0.030
X1 -1.213 1.299 872 1 0.350
AveragX2 -1.036 0.257 16.191 1 0.000
AveragX3 -0.177 0.455 0.151 1 0.697
X4 0.527 0.580 0.824 1 0.364
2 Constant 6.695 2.852 .511 1 0.019
X1 -1.665 1.261 .743 1 0.187
AveragX2 -0.741 0.225 10.804 1 0.001
AveragX3 0.359 0.435 623 1 0.203
X4 0.714 0.560 623 1 0.203

Dependent variable: CATEGORICAL OUTCOME VARIABLE Y AT T6 (3 GROUPS)

‘long-term exposure’ to X, is significantly associated with the first group as
well as the second group of the categorical outcome variable Y, att = 6. The
odds ratios for both groups can be obtained from the regression coefficients,
i.e. the odds ratio is exp(regression coefficient) and the corresponding 95%
confidence interval is exp(regression coefficient & 1.96 times the standard
error of the regression coefficient). The interpretation of the odds ratio is
straightforward: a one-point difference in the ‘long-term exposure’ to X,
between subjects is associated with a 0.35 (i.e. exp(—1.036)) ‘higher’ odds of
being in the lowest tertile of the outcome variable Y, att = 6, compared to
the odds of being in the highest tertile, and a 0.48 (i.e. exp(—0.741)) ‘higher’
odds of being in the second tertile, compared to the odds of being in the
highest tertile. The corresponding 95% confidence intervals are [0.21-0.59]
and [0.31-0.74] respectively.

7.1.5.3 Sophisticated methods
In Chapters 4 and 6, it was argued that longitudinal data analysis with a
continuous outcome variable is a longitudinal extension of linear regression
analysis, and that longitudinal data analysis with a dichotomous outcome
variable is a longitudinal extension of logistic regression analysis, i.e. both
take into account the fact that the repeated measurements within one subject



153

Categorical outcome variables

are correlated. Analogous to this, it is obvious that longitudinal data analysis
with a categorical outcome variable is alongitudinal extension of polytomous
logistic regression analysis. Polytomous logistic regression for longitudinal
data analysis was first described for GEE analysis (see for instance Liang et al.,
1992; Miller et al., 1993; Lipsitz et al., 1994b). Surprisingly this polytomous
logistic GEE approach is still not yet available in standard software packages,
and will therefore not be discussed in detail. The general idea of this GEE
approach is the same as all other GEE approaches, i.e. a correction for the
dependency of observations is performed by assuming a certain ‘working
correlation structure’.

In recent years, a polytomous logistic random coefficient analysis has also
been described (Agresti etal., 2000; Rabe-Hesketh etal., 2001a; Rabe-Hesketh
and Skondral, 2001). As with all other random coefficient analyses described
earlier, with this newly developed method all questions can be answered that
were answered by the earlier mentioned simple methods. Moreover, it can
also be used to analyse the longitudinal relationship between a categorical
outcome variable and one or more predictor variables. The underlying pro-
cedures and the interpretation of the regression coefficients are comparable
to what has been described for logistic random coefficient analysis.

7.1.5.4 Example

The first step in the analysis to answer the question whether there is a rela-
tionship between the categorical outcome variable Y, and the four predictor
variables (X; to X4) and time is to perform a random coefficient analysis
with only a random intercept. Output 7.5 shows the results of this analysis.
The structure of Output 7.5 is comparable to what has been seen for
continuous and dichotomous outcome variables. First the log likelihood of
the model analysed is presented (—784.6426), which is only interesting in
comparison to the log likelihood value of another model, which must be
an extension of the presented model. In the next part of the output, the
regression coefficients and standard errors are given as well as the z-value
(the regression coefficient divided by its standard error), the corresponding
p-value and the 95% confidence intervals of the regression coefficients. In the
example dataset, Y, is a categorical outcome variable with three categories
(i.e. tertiles), so there are two ‘tables’ with regression coefficients. In the first
‘table’ the second tertile of Y., is compared to the lowest tertile of Y, (which
is the reference category), while in the second ‘table’ the highest tertile of Y,
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. Result of a random coefficient analysis with a categorical outcome variable
random intercept

log likelihood = -784.6426

time
__cons

-0.8562861 1.513829 -0.566 0.572 -3.823336 2.110764
0.6193215 0.1712165 3.617 0.000 0.2837433 0.9548997
-0.0428614 0.3847279 -0.111 0.911 -0.7969143 0.7111915
0.1630424 0.6576949 0.248 0.804 -1.126016 1.452101
-0.1380476 0.0753289 -1.833 0.067 -0.2856894 0.0095943
0.4352662 3.829679 0.114 0.910 -7.070767 7.941299

x1
x2
x3
x4
time

_cons

0.0196611 1.520852 0.013 0.990 -2.961154 3.000476
0.9471408 0.1703437 5.560 0.000 0.6132733 1.281008
-0.3353352 0.3953064 -0.848 0.396 -1.110122 0.439451
0.281329 0.6609212 0.426 0.670 -1.014053 1.576711
-0.2002512 0.0769589 -2.602 0.009 -0.3510879 -0.0494144
-2.485896 3.846796 -0.646 0.518 -10.02548 5.053685

***level 2 (id)

var(l): 7

.5624431 (1.6150762)

is compared to the lowest tertile. The interpretation of the regression coeffi-
cients is rather complicated. From Output 7.5 it can be seen that for instance
X, is significantly related to the outcome variable Y,. For the comparison
between the second tertile and the reference category (i.e. the lowest tertile)
the regression coefficient (0.6193215) can be transformed into an odds ratio
(i.e. exp(0.6193215) = 1.86). As for all other longitudinal regression coeffi-
cients this odds ratio hasa ‘combined’ interpretation. (1) The ‘cross-sectional’
or ‘between-subjects’ interpretation: a subject with a one-unit higher score
for predictor variable X,, compared to another subject, has a 1.86 times
higher odds of being in the second tertile compared to the odds of being in
the lowest tertile. (2) The ‘longitudinal’ or ‘within-subject’ interpretation:
an increase of one unit in predictor variable X, within a subject (over a
certain time period) is associated with a 1.86 times higher odds of moving
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from the lowest tertile to the second tertile of the categorical outcome vari-
able Y, compared to the situation in which no change occurs in predictor
variable X,. The regression coefficient of X, belonging to the comparison be-
tween the highest tertile and the lowest tertile (exp(0.9471408) = 2.58) can
be interpreted in the same way. (1) A subject with a one-unit higher score for
predictor variable X,, compared to another subject, has a 2.58 times higher
odds of being in the highest tertile for the categorical outcome variable Y4
compared to the odds of being in the lowest tertile. (2) The ‘longitudinal’
or ‘within-subject’ interpretation: an increase of one unit in predictor vari-
able X, within a subject (over a certain time period) is associated with a
2.58 times higher odds of moving from the lowest tertile to the highest tertile
of the categorical outcome variable Y, compared to the situation in which
no change occurs in predictor variable X,. The magnitude of the regression
coefficient (i.e. the magnitude of the odds ratio) reflects both relationships,
and it is not clear from the results of this analysis, which is the most impor-
tant component of the relationship. However, the relative contribution of
both parts highly depends on the proportion of subjects who move from one
category to another. In the example dataset for instance, the proportion of
subjects who move from the lowest to the highest category is rather low, so
for the comparison between the lowest and the highest tertile, the estimated
odds ratio of 2.58 mainly reflects the ‘between-subjects’ relationship. As for
all other longitudinal data analyses, alternative models are available (e.g. an
autoregressive model, see Section 5.2.3) in which the ‘between-subjects’ and
‘within-subject’ relationships can be more or less separated.

In the last part of Output 7.5 the (normally distributed) random variation
in intercept (7.5624431) with the corresponding standard error (1.6150762)
is provided. Although the variation in intercepts between subjects is rather
high compared to the standard error, basically the necessity of a random
intercept has to be evaluated with the likelihood ratio test. The —2 log likeli-
hood of a model with no random intercept appeared to be 1825.1 (results not
shown in detail). The difference between the —2 log likelihoods is therefore
255.8, i.e. as expected highly significant. So, a random intercept is necessary
in this particular situation.

The next step in the analysis is to add a random slope with time to the
model. Output 7.6 shows the results of this random coefficient analysis. From
Output 7.6, it can be seen that the log likelihood of a model with both a ran-
dom intercept and a random slope with time is decreased (i.e. —774.78094).
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Output 7.6. Result of a random coefficient analysis with a categorical outcome variable
and both a random intercept and a random slope with time

log likelihood = -774.78094

ycat Coeff std. Err Z P > |z| [95% Conf. Interval]
c2
x1 -1.355226 1.601634 -0.846 0.397 -4.494371 1.783918
x2 0.686692 0.1835857 3.740 0.000 0.3268706 1.046513
x3 0.1369879 0.4222135 0.324 0.746 -0.6905353 0.9645111
x4 0.4695151 0.8257442 0.569 0.570 -1.148914 2.087944
time -0.2982958 0.1261828 -2.364 0.018 -0.5456096 -0.050982
_cons 1.529132 4.094066 0.373 0.709 -6.495091 9.553355
c3
x1 -0.4861587 1.606773 -0.303 0.762 -3.635377 2.663059
x2 1.013631 0.1828736 5.543 0.000 0.655205 1.372056
x3 -0.1561199 0.4317889 -0.362 0.718 -1.002411 0.6901707
x4 0.5955992 0.8259557 0.721 0.471 -1.023244 2.214443
time -0.3646409 0.1269982 -2.871 0.004 -0.6135529 -0.115729
_cons -1.372806 4.102624 -0.335 0.738 -9.413802 6.66819

***level 2 (id)
var(l): 27.089896 (8.6944303)

cov(l,2): -2.9612643 (1.2660617) «cor(l,2): -0.85743581
var(2): 0.44029501 (0.18979326)

With this value and the log likelihood value of a model with only a random
intercept, the necessity of a random slope with time can be evaluated. The
difference between the —2 log likelihoods of the both models is 19.72, which
follows a x 2 distribution with two degrees of freedom, i.e. highly significant.
In other words, both a random intercept and a random slope with time must
be considered.

7.2 ‘Count’ outcome variables

A special type of categorical outcome variable is a so-called ‘count’” outcome
variable (e.g. the number of asthma attacks in one year, the incidence rate of a
specific disease, etc.). Because of the discrete and non-negative nature of the
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‘count’ outcome variables, they are assumed to follow a Poisson distribution.
Longitudinal analysis with ‘count’ outcome variables is therefore compar-
able to a (simple) Poisson regression analysis, the difference being that the
longitudinal technique takes into account the within-subject correlations. It
should further be noted that the longitudinal Poisson regression analysis is
sometimes referred to as longitudinal log-linear regression analysis.

As for the longitudinal linear regression analysis, the longitudinal logistic
regression analysis, and the longitudinal polytomous logistic regression ana-
lysis, thelongitudinal Poisson regression analysis s, in fact, nothing more than
an extension of the simple Poisson regression analysis; an extension which
allows a within-subject correlation between the repeated measurements.
With this analysis the development of the ‘count’ outcome variable can be
related to several predictor variables, several time-dependent covariates, sev-
eral time-independent covariates and time. As in (simple) cross-sectional
Poisson regression analysis, all predictor variables and covariates can be con-
tinuous, dichotomous or categorical, although of course in the latter situation
dummy coding can or must be used. As in (simple) cross-sectional Poisson
regression analysis, the regression coefficient can be transformed into a rate
ratio (exp(regression coefficient)). For estimation of the regression coeffi-
cients (i.e. rate ratios) the same sophisticated methods can be used as were
discussed before, i.e. GEE analysis and random coefficient analysis. With GEE
analysis, a correction for the within-subject correlations is made by assuming
a ‘working correlation structure’, while with random coefficient analysis the
different regression coefficients are allowed to vary between individuals (for
technical details see for instance Diggle et al., 1994; Goldstein, 1995).

7.2.1 Example

7.2.1.1 Introduction
The example chosen to illustrate the analysis of a ‘count’ outcome variable is
taken from the same longitudinal study which was used to illustrate most of
the other techniques, i.e. the Amsterdam Growth and Health Longitudinal
Study (Kemper, 1995). One of the aims of the presented study was to invest-
igate the possible clustering of risk factors for coronary heart disease (CHD)
and the longitudinal relationship with several ‘lifestyle’ predictor variables.
To construct a measure of clustering, at each of the six measurements ‘high
risk’ quartiles were formed for each of the following biological risk factors:
(1) the ratio between total serum cholesterol and high density lipoprotein
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Table 7.2. Number of subjects with a particular cluster score
(i.e. the number of CHD risk factors) measured at
six measurements

Number of CHD risk factors

Time-point 0 1 2 3 4
1 65 49 25 4 4
2 60 44 33 9 1
3 47 64 26 9 1
4 54 53 29 9 2
5 56 53 26 11 1
6 55 46 33 13 0

cholesterol, (2) diastolic blood pressure, (3) the sum of skinfolds, and (4) car-
diopulmonary fitness. At each of the repeated measurements, clustering was
defined as the number of biological risk factors that occurred in a particular
subject. So, if a subject belonged to the ‘high risk’ quartile for all biologi-
cal risk factors, the clustering score at that particular measurement was 4,
if the subject belonged to three ‘high risk’ groups, the clustering score
was 3, etc. This cluster score is a ‘count’ outcome variable, and this outcome
variable Y oun is related to four predictor variables: (1) the baseline Keys
score (a time-independent continuous variab